• Title/Summary/Keyword: substrate binding

Search Result 441, Processing Time 0.025 seconds

Nucleation and growth mechanism of nitride films deposited on glass by unbalanced magnetron sputtering

  • Jung, Min J.;Nam, Kyung H.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.14-14
    • /
    • 2001
  • Nitride films such as TiN, CrN etc. deposited on glass by PVD processes have been developed for many industrial applications. These nitride films deposited on glass were widely used for not only decorative and optical coatings but also wear and corrosion resistance coatings employed as dies and molds made of glass for the example of lens forming molds. However, the major problem of nitride coatings on glass by PVD process is non-uniform film owing to pin-hole and micro crack. It is estimated that nonuniform coating is influenced by a different surface energy between metal nitrides and glass due to binding states. In this work, therefore, for the evaluation of nucleation and growth mechanism of nitride films on glass TiN and CrN film were synthesized on glass with various nitrogen partial pressure by unbalanced magnetron sputtering. Prior to deposition, for the examination of relationship between surface energy and film microstructure plasma pre-treatment process was carried out with various argon to hydrogen flow rate and substrate bias voltage, duty cycle and frequency by using pulsed DC power supply. Surface energy owing to the different plasma pre-treatment was calculated by the measurement of wetting angle and surface conditions of glass were investigated by X-ray Photoelectron Spectroscopy(XPS) and Atomic Force Microscope(AFM). The microstructure change of nitride films on glass with increase of film thickness were analyzed by X-Ray Diffraction(XRD) and Scanning Electron Microscopy(SEM).

  • PDF

Inhibition of Acetolactate Synthase from Pea by Pyrimidine Derivatives (Pyrimidine 유도체에 의한 완두 Acetolactate Synthase의 저해에 관한 연구)

  • Joo, Young A;Kim, Dae Whang;Chang, Soo Ik;Choi, Jung Do
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.6
    • /
    • pp.304-312
    • /
    • 1997
  • Acetolactate synthase(ALS) is the common enzyme in the biosynthetic of valine, leucine, and isoleucine, and is the target of several classes of structually unrelated herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. In an effort to develop new and desirable herbicides, we have synthesized 4,6-dimethoxypyrimidine derivatives, and examined their inhibitory activities on pea ALS. The most active compound was found to be K11570 and $IC_{50}$ value for K11570 was 0.2 ${\mu}M.$ The inhibition of pea ALS by K11570 was biphasic, showing increased inhibition with incubation time. The K11570 showed mixed-type inhibition with respect to substrate pyruvate. Dual inhibition analysis of K11570 versus sufonylurea herbicide Ally and feedback inhibitor leucine revealed that three inhibitors were competitive for binding to ALS. The arginine modified enzyme showed decreased inhibition by K11570, sufonylurea Ally, and leucine, in constrast to, tryptophan modification did not affect on the sensitivity of ALS to the inhibitors.

  • PDF

Growth and characterization of ZnIn$_2$S$_4$ single crystal thin film using Hot Wall Epitaxy method (Hot Wall Epitaxy (W)에 의한 ZnIn$_2$S$_4$ 단결정 박막 성장과 특성)

  • 윤석진;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.266-272
    • /
    • 2002
  • The stochiometric mixture of evaporating materials for the ZnIn$_2$S$_4$ single crystal thin film was prepared from horizontal furnace. To obtain the ZnIn$_2$S$_4$ single crystal thin film, ZnIn$_2$S$_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100) in the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 610 $^{\circ}C$ and 450 $^{\circ}C$, respectively and the growth rate of the ZnIn$_2$S$_4$ single crystal thin film was about 0.5 $\mu\textrm{m}$/hr. The crystalline structure of ZnIn$_2$S$_4$ single crystal thin film was investigated by photo1uminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of ZnIn$_2$S$_4$ single crystal thin film measured from Hall effect by van der Pauw method are 8.51${\times}$10$\^$17/ cm$\^$-3/, 291 $\textrm{cm}^2$/V$.$s at 293 $^{\circ}$K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the ZnIn$_2$S$_4$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 0.0148 eV and 0.1678 eV at 10 $^{\circ}$K, respectively. From the photoluminescence measurement of ZnIn$_2$S$_4$ single crystal thin film, we observed free excition (E$\_$X/) typically observed only in high quality crystal and neutral donor bound exciton (D$^{\circ}$,X) having very strong peak intensity. The full width at half maximum and binding energy of neutral donor bound excition were 9 meV and 26 meV, respectively. The activation energy of impurity measured by Haynes rule was 130 meV.

  • PDF

Affinity Labeling of E. coli GTP Cyclohydrolase I by a Dialdehyde Derivative of Guanosine Triphosphate

  • Ahn, Chi-Young;Park, Sang-Ick;Kim, Ju-Myeong;Yim, Jeong-Bin
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.72-78
    • /
    • 1995
  • Time-dependent inactivation of E. coli GTP cyclohydrolase I with a 2',3'-dialdehyde derivative of GTP (oGTP) was directed to the active site of the enzyme, and was dependent on the concentration of oGTP. The kinetics of inactivation were biphasic with a rapid reaction occurring immediately upon exposure of the enzyme to oGTP followed by a slow rate of inactivation. The $K_i$ value of oGTP for the enzyme was 0.25 mM. Inactivation was prevented by preincubation of the enzyme with GTP, the substrate of the enzyme. At 100% inactivation, 2.3 mol of [8.5'-$^3H$]oGTP were bound per each enzyme subunit, which consists of two identical polypeptides. The active site residue which reacted with the affinity label was lysine. oGTP interacted selectively with the ${\varepsilon}$-amino group of lysine in the GTP-binding site to form a morpholine-like structure which was stable without sodium borohydride treatment. However, triphosphate group was eliminated during the hydrolysis step. To identify the active site of the enzyme, [8.5'-$^3H$]oGTP-labeled enzyme was cleaved by endoproteinase Lys-C, and the $^3H$-labeled peptide was purified by HPLC. The amino acid sequence of the active site peptide was Pro-Ser-Leu-Ser-Lys, which corresponds to the aminoterminal sequence of the enzyme.

  • PDF

Functional Studies of Tyrosine 108 Residue in the Active Site of Human Glutathione S-Transferase P1-1

  • Park, Hee-Joong;Koh, Jong-Uk;Ahn, So-Youn;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.433-439
    • /
    • 2005
  • To gain further insight on the relationship between structure and functions of glutathione S-transferase (GST), the three tyrosine 108 mutants, Y108A, Y108F, and Y108W, of human GST P1-1 were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitution of Tyr 108 with alanine resulted in significant decrease of the GSH-conjugation activity and the GSH peroxidase activity, but approximately 63% increase of steroid isomerase activity toward ${\Delta}^5$–[androstene 3,17-dione. On the other hand, the substitution of Tyr 108 with phenylalanine resulted in decreases of $k_{cat}\;and\;k_{cat}/K_m{^{EPNP}}$ by 2 orders of magnitude, suggesting that Tyr 108 residue of hGSTP1-1 are considered to be important for the catalysis and the binding of the epoxide substrates. The substitution of Tyr 108 with tryptophan resulted in significant decreases of the specific activities toward EPNP, cumene hydroperoxide and ${\Delta}^5$–ndrostene 3,17-dione, but approximately 2-fold increase on the enzyme-catalyzed addition of GSH to DCNB. We conclude from these results that Tyr 108 in hGST P1-1 plays very different roles depending upon the nature of the electrophilic substrates.

Effect of NUCKS-1 Overexpression on Cytokine Profiling in Obese Women with Breast Cancer

  • Soliman, Nema Ali;Zineldeen, Doaa Hussein;El-Khadrawy, Osama Helmy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.837-845
    • /
    • 2014
  • Background: Overweight and obesity are recognized as major drivers of cancers including breast cancer. Several cytokines, including interleukin-6 (IL-6), IL-10 and lipocalin 2 (LCN2), as well as dysregulated cell cycle proteins are implicated in breast carcinogenesis. The nuclear, casein kinase and cyclin-dependent kinase substrate-1 (NUCKS-1), is a nuclear DNA-binding protein that has been implicated in several human cancers, including breast cancer. Objectives: The present study was conducted to evaluate NUCKS-1 mRNA expression in breast tissue from obese patients with and without breast cancer and lean controls. NUCKS-1 expression was correlated to cytokine profiles as prognostic and monitoring tools for breast cancer, providing a molecular basis for a causal link between obesity and risk. Materials and Methods: This study included 39 females with breast cancer (G III) that was furtherly subdivided into two subgroups according to cancer grading (G IIIa and G IIIb) and 10 control obese females (G II) in addition to 10 age-matched healthy lean controls (G I). NUCKS-1 expression was studied in breast tissue biopsies by means of real-time PCR (RT-PCR). Serum cytokine profiles were determined by immunoassay. Lipid profiles and glycemic status as well as anthropometric measures were also recorded for all participants. Results: IL-6, IL-12 and LCN2 were significantly higher in control obese and breast cancer group than their relevant lean controls (p<0.05), while NUCKS-1 mRNA expression was significantly higher in the breast cancer group compared to the other groups (p<0.05). Significant higher levels of IL-6, IL-12, and LCN2 as well as NUCKS-1 mRNA levels were reported in G IIIb than G IIIa, and positively correlated with obesity markers in all obese patients. Conclusions: Evaluation of cytokine levels as well as related gene expression may provide a new tool for understanding interactions for three axes of carcinogenesis, innate immunity, inflammation and cell cycling, and hope for new strategies of management.

Localized Surface Plasmon Resonance (LSPR) Biosensors on Metal Nanoparticles with the Design of Bioreceptors

  • Kim, Min-Gon;Park, Jin-Ho;Byun, Ju-Young;Shin, Yong-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.126-126
    • /
    • 2014
  • Label-free biomolecular assay based localized surface plasmon resonance (LSPR) of noble metal nanoparticles enables simple and rapid detection with the use of simple equipment. Nanosized metal nanoparticles exhibit a strong absorption band when the incident light frequency is resonant with the collective oscillation of the electrons, which is known as the LSPR. Here we demonstrate localized surface plasmon resonance (LSPR) substrates such as plasmonic Au nanodisks fabricated by a nanoimprinting process and gold nanorod-immobilized surfaces and their applications to highly sensitive and/or label-free biosensing. To increase detection sensitivity various bioreceptors weree designed. A single chain variable fragment (scFv) was used as a receptor to bind C-reactive protein (CRP). The results of this effort showed that CRP in human serum could be quantitatively detected lower than 1 ng/ml. Aptamers, which were immobilized on gold nanorods, were used to detect mycotoxins. The specific binding of ochratoxin A (OTA) to the aptamer was monitored by the longitudinal wavelength shift of LSPR peak in the UV-Vis spectra resulting from the changes of local refractive index near the GNR surface induced by accumulation of OTA and G-quadruplex structure formation of the aptamer. According to our results, OTA could be quantitatively detected lower than 1 nM level. Additionally, aptamer-functionalized GNR substrate was quite robust and can be regenerated many times by rinsing at 70 OC to remove bound target. During seven times of washing steps, the developed OTA sensing system could be reusable. Moreover, the proposed biosensor exhibited selectivity over other mycotoxins with an excellent recovery for detection in grinded corn samples, suggesting that the proposed LSPR based aptasensor plays an important role in label-free detection of mycotoxins.

  • PDF

Biochemical and Cellular Investigation of Vitreoscilla Hemoglobin (VHb) Variants Possessing Efficient Peroxidase Activity

  • Isarankura-Na-Ayudhya, Chartchalerm;Tansila, Natta;Worachartcheewan, Apilak;Bulow, Leif;Prachayasittikul, Virapong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.532-541
    • /
    • 2010
  • Peroxidase-like activity of Vitreoscilla hemoglobin (VHb) has been recently disclosed. To maximize such activity, two catalytically conserved residues (histidine and arginine) found in the distal pocket of peroxidases have successfully been introduced into that of the VHb. A 15-fold increase in catalytic constant ($k_{cat}$) was obtained in P54R variant,which was presumably attributable to the lower rigidity and higher hydrophilicity of the distal cavity arising from substitution of proline to arginine. None of the modifications altered the affinity towards either $H_2O_2$ or ABTS substrate. Spectroscopic studies revealed that VHb variants harboring the T29H mutation apparently demonstrated a spectral shift in both ferric and ferrous forms (406-408 to 411 nm, and 432 to 424-425 nm, respectively). All VHb proteins in the ferrous state had a $\lambda_{soret}$ peak at ~419 nm following the carbon monoxide (CO) binding. Expression of the P54R mutant mediated the downregulation of iron superoxide dismutase (FeSOD) as identified by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting (PMF). According to the high peroxidase activity of P54R, it could effectively eliminate autoxidation-derived $H_2O_2$, which is a cause of heme degradation and iron release. This decreased the iron availability and consequently reduced the formation of the $Fe^{2+}$-ferric uptake regulator protein ($Fe^{2+}$-Fur), an inducer of FeSOD expression.

Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation

  • Yu, Un Young;Yoo, Byong Chul;Ahn, Jung-Hyuck
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2014
  • Overexpression of amyloid precursor protein with the Swedish mutation causes abnormal hyperphosphorylation of the microtubule-associated protein tau. Hyperphosphorylated isoforms of tau are major components of neurofibrillary tangles, which are histopathological hallmarks of Alzheimer's disease. Protein phosphatase 2A (PP2A), a major tau protein phosphatase, consists of a structural A subunit, catalytic C subunit, and a variety of regulatory B subunits. The B subunits have been reported to modulate function of the PP2A holoenzyme by regulating substrate binding, enzyme activity, and subcellular localization. In the current study, we characterized regulatory B subunit-specific regulation of tau protein phosphorylation. We showed that the PP2A B subunit PPP2R2A mediated dephosphorylation of tau protein at Ser-199, Ser-202/Thr-205, Thr-231, Ser-262, and Ser-422. Down-regulation of PPP2R5D expression decreased tau phosphorylation at Ser-202/Thr-205, Thr-231, and Ser-422, which indicates activation of the tau kinase glycogen synthase kinase 3 beta ($GSK3{\beta}$) by PP2A with PPP2R5D subunit. The level of activating phosphorylation of the $GSK3{\beta}$ kinase Akt at Thr-308 and Ser-473 were both increased by PPP2R5D knockdown. We also characterized B subunit-specific phosphorylation sites in tau using mass spectrometric analysis. Liquid chromatography-mass spectrometry revealed that the phosphorylation status of the tau protein may be affected by PP2A, depending on the specific B subunits. These studies further our understanding of the function of various B subunits in mediating site-specific regulation of tau protein phosphorylation.

The three proline residues (P25, P242, and P434) of Agrobacterium CP4 5-enolpyruvylshikimate-3-phosphate synthase are crucial for the enzyme activity

  • Kang, Kyung-Su;Jin, Yong-Mei;Jeon, Hye-Sung;Park, Sang-Ryoung;Song, Dae-Geun;Lee, Joo-Young;Pan, Cheol-Ho;Kim, Min-Kyun
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.329-334
    • /
    • 2010
  • Multiple sequence alignments showed that the prolines at the 25th, 129th, 153rd, 242nd, 322nd, and 434th amino acids in 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4 are strongly conserved in various prokaryotic EPSPS proteins. Single point mutations of the conserved prolines to alanine (P25A, P153A, P242A, P322A, and P434A) were introduced in the CP4 EPSPS in order to investigate the importance of the conserved prolines for the enzyme properties. The point mutations caused decreases in substrate binding affinity and catalytic efficiency as well as the glyphosate resistance, in general. Especially, the 25th and 242nd prolines located in the polypeptide hinges connecting top and bottom domains of CP4 EPSPS as well as the 434th proline at the C-terminus of the enzyme turned out to be crucial for the enzyme activity.