DOI QR코드

DOI QR Code

Functional Studies of Tyrosine 108 Residue in the Active Site of Human Glutathione S-Transferase P1-1

  • Park, Hee-Joong (Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Koh, Jong-Uk (Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Ahn, So-Youn (Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Kong, Kwang-Hoon (Department of Chemistry, College of Sciences, Chung-Ang University)
  • Published : 2005.03.20

Abstract

To gain further insight on the relationship between structure and functions of glutathione S-transferase (GST), the three tyrosine 108 mutants, Y108A, Y108F, and Y108W, of human GST P1-1 were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitution of Tyr 108 with alanine resulted in significant decrease of the GSH-conjugation activity and the GSH peroxidase activity, but approximately 63% increase of steroid isomerase activity toward ${\Delta}^5$–[androstene 3,17-dione. On the other hand, the substitution of Tyr 108 with phenylalanine resulted in decreases of $k_{cat}\;and\;k_{cat}/K_m{^{EPNP}}$ by 2 orders of magnitude, suggesting that Tyr 108 residue of hGSTP1-1 are considered to be important for the catalysis and the binding of the epoxide substrates. The substitution of Tyr 108 with tryptophan resulted in significant decreases of the specific activities toward EPNP, cumene hydroperoxide and ${\Delta}^5$–ndrostene 3,17-dione, but approximately 2-fold increase on the enzyme-catalyzed addition of GSH to DCNB. We conclude from these results that Tyr 108 in hGST P1-1 plays very different roles depending upon the nature of the electrophilic substrates.

Keywords

References

  1. Mannervik, B.; Danielson, U. H. CRC Crit. Rev. Biochem. 1988, 23, 283 https://doi.org/10.3109/10409238809088226
  2. Mayer, D. J.; Beale, D.; Tan, K. H.; Coles, B.; Ketterer, B. FEBS Lett. 1985, 184, 139 https://doi.org/10.1016/0014-5793(85)80670-0
  3. Benson, A. M.; Talalay, P.; Keen, J. H.; Jakoby, W. B. Proc. Natl. Acad. Sci. USA 1977, 74, 158
  4. Litwack, G.; Ketterer, B.; Arias, I. M. Nature (London) 1971, 234, 466 https://doi.org/10.1038/234466a0
  5. Fahey, R. C.; Sundquist, A. R. Adv. Enzymol. Rel. Areas Mol. Biol. 1991, 64, 1 https://doi.org/10.1002/9780470123102.ch1
  6. Mannervik, B. Adv. Enzymol. Rel. Areas Mol. Biol. 1985, 57, 357 https://doi.org/10.1002/9780470123034.ch5
  7. Mannervik, B.; Awasthi, Y. C.; Board, P. G.; Hayes, J. D.; Ilio, C.; Ketterer, B.; Listowsky, I.; Morgenstern, R.; Muramatsu, M.; Pearson, W. R.; Pickett, C. B.; Sato, K.; Widersten, M.; Wolf, C. R. Biochem. J. 1992, 282, 305
  8. Tsuchida, S.; Sato, K. CRC Crit. Rev. Biochem. Mol. Biol. 1992, 27, 337 https://doi.org/10.3109/10409239209082566
  9. Morgan, A. S.; Ciaccio, P. J.; Tew, K. D.; Kauvar, L. M. Cancer Chemother. Pharmacol. 1996, 37, 363 https://doi.org/10.1007/s002800050398
  10. Reinemer, P.; Dirr, H. W.; Ladenstein, R.; Schäffer, J.; Gallay, O.; Huber, R. EMBO J. 1991, 10, 1997
  11. Ji, X.; Zhang, P.; Armstrong, R. N.; Gilliland, G. L. Biochemistry 1992, 31, 10169 https://doi.org/10.1021/bi00157a004
  12. Caccuri, A. M.; Petruzzelli, R.; Polizio, F.; Federici, G.; Desideri, A. Arch. Biochem. Biophys. 1992, 297, 119 https://doi.org/10.1016/0003-9861(92)90648-G
  13. Desideri, A.; Caccuri, A. M.; Poligio, F.; Bastoni, R.; Federici, G. J. Biol. Chem. 1991, 266, 2063
  14. Lo Bello, M.; Petruzzelli, R.; De Stefano, E.; Tenedini, C.; Barra, D.; Federici, G. FEBS Lett. 1990, 263, 389 https://doi.org/10.1016/0014-5793(90)81421-J
  15. Nishikawa, T.; Maeda, H.; Okamoto, K.; Oshida, T.; Mizoguchi, T.; Terada, T. Biochem. Biophys. Res. Commun. 1991, 174, 580 https://doi.org/10.1016/0006-291X(91)91456-M
  16. Tamai, K.; Satoh, K.; Tsuchida, S.; Hatayama, I.; Maki, T.; Sata, K. Biochem. Biophys. Res. Commun. 1990, 167, 331 https://doi.org/10.1016/0006-291X(90)91769-O
  17. Chen, W.-L.; Haieh, J.-C.; Hong, J.-L.; Tsai, S.-P.; Tam, M. F. Biochem. J. 1992, 286, 205
  18. Haieh, J.-C.; Huang, S.-C.; Chen, W.-L.; Lai, Y.-C.; Tam, M. F. Biochem. J. 1991, 278, 293
  19. Kong, K.-H.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1991, 181, 748 https://doi.org/10.1016/0006-291X(91)91254-A
  20. Kong, K.-H.; Nishida, M.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1992, 182, 1122 https://doi.org/10.1016/0006-291X(92)91848-K
  21. Kong, K.-H.; Takasu, K.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1992, 184, 194 https://doi.org/10.1016/0006-291X(92)91177-R
  22. Kong, K.-H.; Inoue, H.; Takahashi, K. Protein Engineering 1993, 6, 93 https://doi.org/10.1093/protein/6.1.93
  23. Park, H.-J.; Lee, K.-S.; Cho, S.-H.; Kong, K.-H. Bull. Korean Chem. Soc. 2001, 22, 77
  24. Ji, X.; Von Rosenvinge, E. C.; Johnson, W. W.; Tomarev, S. I.; Piatigorsky, J.; Armstrong, R. N.; Gilliland, G. L. Biochemistry 1995, 34, 5317 https://doi.org/10.1021/bi00016a003
  25. Sinning, I.; Kleywegt, G. J.; Cowan, S. W.; Reinemer, P.; Dirr, H. W.; Huber, R.; Gilliland, G. L.; Armstrong, R. N.; Ji, X.; Board, P. G.; Olin, B.; Mannervik, B.; Jones, T. A. J. Mol. Biol. 1993, 232, 192 https://doi.org/10.1006/jmbi.1993.1376
  26. Wilce, M. C. J.; Board, P. G.; Feil, S. C.; Parker, M. W. EMBO J. 1995, 14, 2133
  27. Reinemer, P.; Dirr, H. W.; Ladenstein, R.; Huber, R. J. Mol. Biol. 1992, 217, 214
  28. Johnson, W. W.; Liu, S.; Ji, X.; Gilliland, G. L.; Armstrong, R. N. J. Biol. Chem. 1993, 268, 11508
  29. Ji, X.; Johnson, W. W.; Sesay, M. A.; Dickert, L.; Prasad, S. M.; Ammon, H. L.; Armstrong, R. N.; Gilliland, G. L. Biochemistry 1994, 33, 1043 https://doi.org/10.1021/bi00171a002
  30. Widersten, M.; Björnestedt, R.; Mannervik, B. Biochemistry 1994, 33, 11717 https://doi.org/10.1021/bi00205a007
  31. Zimniak, P.; Nanduri, B.; Pikula, S.; Bandorowicz-Pikula, J.; Singhal, S. S.; Srivastava, S. K.; Awasthi, S.; Awasthi, Y. C. Eur. J. Biochem. 1994, 224, 893 https://doi.org/10.1111/j.1432-1033.1994.00893.x
  32. Bammler, T.; Driessen, H.; Finnstrom, N.; Wolf, C. R. Biochemistry 1995, 34, 9000 https://doi.org/10.1021/bi00028a008
  33. Ahn, S.-Y.; Jeon, S.-H.; Park, H.-J.; Kong, K.-H. Bull. Korean Chem. Soc. 2003, 24, 1188 https://doi.org/10.5012/bkcs.2003.24.8.1188
  34. Schramm, V. L.; McCluskey, R.; Emig, F. A.; Litwack, G. J. Biol. Chem. 1984, 259, 714
  35. Kano, T.; Sakai, M.; Muramatsu, M. Cancer Res. 1987, 47, 5626
  36. Kunkel, T. A. Proc. Natl. Acad. Sci. USA 1985, 82, 488
  37. Parker, M. W.; Bello, M. L.; Federici, G. J. Mol. Biol. 1990, 213, 221 https://doi.org/10.1016/S0022-2836(05)80183-4
  38. Habig, W. H.; Jakoby, W. B. Methods Enzymol. 1981, 77, 398 https://doi.org/10.1016/S0076-6879(81)77053-8
  39. Flohe, L.; Gunzler, W. A. Methods. Enzymol. 1984, 105, 114 https://doi.org/10.1016/S0076-6879(84)05015-1
  40. Ketterer, B.; Tan, K. H.; Meyer, D. J.; Coles, B. Glutahtione STransferase and Carcinog. 1987, 149
  41. Mannervik, B. Adv. Enzymol. Rel. Areas Mol. Biol. 1985, 57, 357 https://doi.org/10.1002/9780470123034.ch5
  42. Tsuchida, S.; Sato, K. CRC Crit. Rev. Biochem. Mol. Biol. 1992, 27, 337 https://doi.org/10.3109/10409239209082566
  43. Barycki, J. J.; Colman, R. F. Biochemistry 1993, 32, 13002 https://doi.org/10.1021/bi00211a008
  44. Pettigrew, N. E.; Moyer-Myers, M.; Colman, R. F. Arch. Biochem. Biophys. 1999, 364, 107 https://doi.org/10.1006/abbi.1999.1126
  45. Ji, X.; Von Rosenvinge, E. C.; Johnson, W. W.; Tomarev, S. I.;Piatigorsky, J.; Armstrong, R. N.; Gilliland, G. L. Biochemistry 1995, 34, 5317 https://doi.org/10.1021/bi00016a003

Cited by

  1. Inhibitory Effects on L-Dopa Oxidation of Tyrosinase by Skin-whitening Agents vol.26, pp.7, 2005, https://doi.org/10.5012/bkcs.2005.26.7.1135
  2. Site-directed Mutagenesis of Arginine 13 Residue in Human Glutathione S-Transferase P1-1 vol.28, pp.5, 2005, https://doi.org/10.5012/bkcs.2007.28.5.772