• 제목/요약/키워드: substrate binding

검색결과 441건 처리시간 0.025초

Chemical Modification of 5-Lipoxygenase from the Korean Red Potato

  • Kim, Kyoung-Ja
    • BMB Reports
    • /
    • 제33권2호
    • /
    • pp.172-178
    • /
    • 2000
  • The lipoxygenase was purified 35 fold to homogeneity from the Korean red potato by an ammonium sulfate precipitation and DEAE-cellulose column chromatography. The simple purification method is useful for the preparation of pure lipoxygenase. The molecular weight of the enzyme was estimated to be 38,000 by SDS-polyacrylamide gel electrophoreses and Sepharose 6B column chromatography. The purified enzyme with 2 M $(NH_4)_2SO_4$ in a potassium phosphate buffer, pH 7.0, was very stable for 5 months at $-20^{\circ}C$. Because the purified lipoxygenase is very stable, it could be useful for the screening of a lipoxygenase inhibitor. The optimal pH and temperature for lipoxygenase purified from the red potato were found to be pH 9.0. and $30^{\circ}C$, respectively. The Km and Vmax values for linoleic acid of the lipoxygenase purified from the red potato were $48\;{\mu}M$ and $0.03\;{\mu}M$ per minute per milligram of protein, respectively. The enzyme was insensitive to the metal chelating agents tested (2 mM KCN, 1 and 10mM EDTA, and 1 mM $NaN_3$), but was inhibited by several divalent cations, such as $Cu^{++}$, $Co^{++}$ and $Ni^{++}$. The essential amino acids that were involved in the catalytic mechanism of the 5-lipoxygenase from the Korean red potato were determined by chemical modification studies. The catalytic activity of lipoxygenase from the red potato was seriously reduced after treatment with a diethylpyrocarbonate (DEPC) modifying histidine residue and Woodward's reagent (WRK) modifying aspartic/glutamic acid. The inactivation reaction of DEPC (WRK) processed in the form of pseudo-first-order kinetics. The double-logarithmic plot of the observed pseudo-first-order rate constant against the modifier concentration yielded a reaction order 2, indicating that two histidine residues (carboxylic acids) were essential for the lipoxygenase activity from the red potato. The linoleic acid protected the enzyme against inactivation by DEPC(WRK), revealing that histidine and carboxylic amino acids residues were present at the substrate binding site of the enzyme molecules.

  • PDF

Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Choi, Soo-Young;Song, Min-Sun;Lee, Byung-Ryong;Jang, Sang-Ho;Lee, Su-Jin;Park, Jin-Seu;Choe, Joon-Ho;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.112-117
    • /
    • 1995
  • Succinic semialdehyde reductase was inactivated by o-phthalaldehyde. The inactivation followed pseudo-first order kinetics, and the second-order rate constant for the inactivation process was 28 $M^{-1}s^{-1}$ at pH 7.4 and $25^{\circ}C$. The absorption spectrum ($\lambda_{max}$ 337 nm) and fluorescence excitation ($\lambda_{max}$ 340 nm) and fluorescence emission spectra ($\lambda_{max}$ 409 nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residue approximately about 3 $\AA$ apart. The substrate, succinic semialdehyde, did not protect enzymatic activity against inactivation, whereas the coenzyme NADPH protected against o-phthaladehyde induced inactivation of the enzyme. About 1 isoindole group per mol of the enzyme was formed following complete loss of enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in a reaction with o-phthalaldehyde are cysteinyl and lysyl residues at or near the NADPH binding site.

  • PDF

양파망을 이용한 느타리버섯(Pleurotus ostreatus) 재배기술 (Establishment of artifical cultivation technique of Pleurotus ostreatus using an onion net)

  • 유영진;서상영;정기태;류정;고복래;최정식;김명곤
    • 한국버섯학회지
    • /
    • 제4권3호
    • /
    • pp.101-105
    • /
    • 2006
  • 본 연구는 볏짚을 이용한 느타리버섯 균상재배를 할 때 볏짚을 결속하고 절단하는 과정에서 많은 노동시간이 소요되어 이를 개선하고자 수행되었다. 볏짚과 폐면의 이화학적 성분은 다소차이가 있으나 폐면에서 C/N율은 84~85로 볏짚과 유사하여 혼합재료로 사용이 가능하다. 양파망 규격은 $35{\times}30cm$, 볏짚과 폐면의 배합비는 40:60(V/V)으로 하였을 때 6주기기간동안 평균수량이 양파망 1개당 1.450g 이였다. 배지재료를 준비하는 기간은 양파망재배가 볏짚 재재보다 3일정도 기간을 절감할 수 있었고 접종도 4시간정도 절략되어 전체적으로 3.5일정도 시간을 절략 5%의 경제적 이득이 있는 것으로 분석되었다.

  • PDF

Distinction between the Influence of Dielectric Constant and of Methanol Concentration on Trypsin-Catalyzed Hydrolysis and Methanolysis

  • Park, Hyun;Chi, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.656-662
    • /
    • 1998
  • To make a distinction between the influence of the dielectric constant and of methanol concentration on trypsin-catalyzed hydrolysis and methanolysis at $0^{\circ}C$, a model reaction of $N^u$-benzyloxycarbonyl-L-lysine p-nitrophenyl ester with water-methanol mixtures was chosen and a kinetic study done. The $k_{cat}$ values increased with methanol concentration, in a linear manner whereas $K_{M}$ values increased in a log-linear fashion. However, the $k_{cat},$_{M}$ ratio increased at lower methanol concentrations than 30% and then began to decrease at higher concentrations. The decrease in $k_{catK_M}$observed at higher than 30% methanol concentrations is attributed to the hydrophobic partitioning effect on substrate binding. On the other hand, the increase in $k_{catK_M}$ in the 0~30% methanol concentration range seems to be due to the effect of nucleophilic cosolvent on $k_{cat}$ and of the dielectric constant on $k_m$. This explanation was verified by measuring the effect of varying the dielectric constant of the medium on kinetic constants with isopropyl alcohol chemically unrelated to the enzyme reaction as the methanol concentration is maintained at a constant level. Therefore, we conclude that the effect of increasing the methanol concentration in the model reaction on the kinetic parameters $k_{cat \;and\;{K_M}}$ is caused by changes in both the nucleophilicity and the dielectric constant of the medium. Based on product analysis, the increase in $k_4, k_3$by decreasing the temperature can be accounted for by the suppression of hydrolytic reactions. This observation indicates that the nucleophile is favored by low temperatures. There was no loss of trypsin activity over a 10 h period in 60% methanol concentration at $pH^*\; 5.5,\; 0^{\circ}C$.EX>.

  • PDF

Production of Gamma-Linolenic Acid in Pichia pastoris by Expression of a Delta-6 Desaturase Gene from Cunninghamella echinulata

  • Wan, Xia;Zhang, Yinbo;Wang, Ping;Huang, Fenghong;Chen, Hong;Jiang, Mulan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1098-1102
    • /
    • 2009
  • Gamma-linolenic acid (GLA, C18:3 ${\Delta}^{6,9,12}$) is synthesized by a delta-6 fatty acid desaturase using linoleic acid (LA, C18:2 ${\Delta}^{9,12}$) as a substrate. To enable the production of GLA in the conventional yeast Pichia pastoris, we have isolated a cDNA encoding the delta-6 fatty acid desaturase from Cunninghamella echinulata MIAN6 and confirmed its function by heterogeneous expression in P. pastoris. Sequence analysis indicated that this cDNA sequence has an open reading frame of 1,404 bp, which encodes a 52 kDa peptide of 468 amino acids. This sequence has 64% identity to the previously reported delta-6 fatty acid desaturase from Rhizopus oryzae. The polypeptide has a cytochrome b5 domain at the N-terminus including the HPGG motif in the heme-binding region, as reported for other delta-6 fatty acid desaturases. In addition, this enzyme differs from other desaturases by the presence of three possible N-linked glycosylation sites. Analysis of the fatty acid composition demonstrated the accumulation of GLA to the level of 3.1% of the total fatty acids. Notably, the amounts of ginkgolic acid (C17:1) and palmitic acid (C16:0) were increased from 1.3% to 29.6% and from 15% to 33%, respectively. These results reveal that the modification of the fatty acid biosynthetic pathway by genetic manipulation in order to produce specific polyunsaturated fatty acids in P. pastoris is a promising technique.

Effect of Cisplatin on Sodium-Dependent Hexose Transport in LLC-$PK_1$ Renal Epithelial Cells

  • Lee, Suk-Kyu;Kim, Jee-Yeun;Yu, Tai-Hyun;Kim, Kyoung-Ryong;Kim, Kwang-Hyuk;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 1997
  • Cis-dichlorodiammine platin${\mu}M$II (Cisplatin), an effective chemotherapeutic agent, induces acute renal failure by unknown mechanisms. To investigate direct toxic effects of cisplatin on the renal proximal tubular transport system, LLC-$PK_1$ cell line was selected as a cell model and the sugar transport activity was evaluated during a course of cisplatin treatment. Cells grown to confluence were treated with cisplatin for 60 min, washed, and then incubated for up to 5 days. At appropriate intervals, cells were tested for sugar transport activity using ${\alpha}-methyl-D-[^{14}C]glucopyranoside$ (AMG) as a model substrate. In cells treated with 100 ${\mu}M$ cisplatin, the AMG uptake was progressively impaired after 3 days. The viability of cells was not substantially changed with cisplatin of less than 100 ${\mu}M$, but it decreased markedly with 150 and 200 ${\mu}M$. In cisplatin-treated cells, the $Na^+$ -dependent AMG uptake was drastically inhibited with no change in the $Na^+$ -independent uptake. Kinetic analysis indicated that Vmax was suppressed, but Km was not altered. The $Na^+$ -dependent phlorizin binding was also decreased in cisplatin-treated cells. However, the AMG efflux from preloaded cells was not apparently retarded by cisplatin treatment. These data indicate that the cisplatin treatment impairs $Na^+$ -hexose cotransporters in LLC-$PK_1$ cells and suggest strongly that defects in transporter function at the luminal plasma membrane of the proximal tubular cells constitute an important pathogenic mechanism of cisplatin nephrotoxicity.

  • PDF

Interaction of Bovine Growth Hormone with Buffalo Adipose Tissue and Identification of Signaling Molecules in Its Action

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권7호
    • /
    • pp.1030-1038
    • /
    • 2007
  • Results on localization of growth hormone receptor (GHR), interaction of growth hormone (GH) with receptor in buffalo adipose tissue and identification of activated signaling molecules in the action of GH are presented. Bovine GH (bGH) was labeled with fluorescein or biotin. Fluorescein-labelled bGH was used for localization of GHRs in buffalo adipocytes. The receptors were present on the cell surface. The affinity of binding of GH to its receptor was determined by designing an experiment in which buffalo adipose tissue explants, biotinylated GH and streptavidin-peroxidase conjugate were employed. The affinity constant was calculated to be $2{\times}10^8M^{-1}$. The receptor density on adipose tissue was found to be 1 femto mole per mg of tissue. Signalling molecules generated in the action of GH were tentatively identified by employing Western blot and enhanced chemiluminescence techniques using anti-phosphotyrosine antibody. Based on molecular weights of proteins reactive to anti-phosphotyrosine antibody, three signaling molecules viz. insulin receptor substrate, Janus activated kinase (Jak) and mitogen activated protein were tentatively identified. These signaling molecules appeared in a time (incubation time of explants with growth hormone) dependent way. The activation of Jak2 was confirmed by employing anti-Jak2 antibody in a Western blot. The activation of Jak2 occurred during 5 min incubation of buffalo adipose tissue explants with GH and incubation for an additional period, viz. 30 min. or 60 min., resulted in a drastic reduction in activation. The results suggest that Jak2 activation is an early event in the action of GH in buffalo adipose tissue.

Improvement of Enzymatic Stability and Catalytic Efficiency of Recombinant Fusariumoxysporum Trypsin with Different N-Terminal Residues Produced by Pichiapastoris

  • Yang, Ning;Ling, Zhenmin;Peng, Liang;Liu, Yanlai;Liu, Pu;Zhang, Kai;Aman, Aman;Shi, Juanjuan;Li, Xiangkai
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1482-1492
    • /
    • 2018
  • Fusarium oxysporum trypsin (FOT) is a fungal serine protease similar to mammal trypsin. The FOT could be successfully expressed in Pichiapastoris by engineering the natural propeptide APQEIPN. In this study, we constructed two recombinant enzymes with engineered amino acid sequences added to the N-terminus of FOT and expressed in P. pastoris. The N-terminal residues had various effects on the structural and functional properties of trypsin. The FOT, and the recombinants TE (with peptide YVEF) and TS (with peptide YV) displayed the same optimum temperature ($40^{\circ}C$) and pH (8.0). However, the combinants TE and TS showed significantly increased thermal stability at $40^{\circ}C$ and $50^{\circ}C$. Moreover, the combinants TE and TS also showed enhanced tolerance of alkaline pH conditions. Compared with those of wild-type FOT, the intramolecular hydrogen bonds and the cation ${\pi}$-interactions of the recombinants TE and TS were significantly increased. The recombinants TE and TS also had significantly increased catalytic efficiencies (referring to the specificity constant, $k_{cat}/K_m$), 1.75-fold and 1.23-fold than wild-type FOT. In silico modeling analysis uncovered that the introduction of the peptides YVEF and YV resulted in shorter distances between the substrate binding pocket (D174, G198, and G208) and catalytic triad (His42, Asp102, and Ser180), which would improve the electron transfer rate and catalytic efficiency. In addition, N-terminal residues modification described here may be a useful approach for improving the catalytic efficiencies and characteristics of other target enzymes.

화학수식제에 의한 Bacillus alcalophilus AX2000 유래 Xylanase의 활성에 관여하는 아미노산 잔기의 확인 (Identification of Amino Acid Residues Involved in Xylanase Activity from Bacillus alcalophilus AX2000 by Chemical Modifiers)

  • 박영서
    • 한국미생물·생명공학회지
    • /
    • 제34권2호
    • /
    • pp.121-128
    • /
    • 2006
  • Bacillus alcalophilus AX2000으로부터 xylanase를 정제한 후 효소의 활성부위를 조사하기 위하여 여러 가지 화학수식제를 사용하여 효소활성의 저해도를 측정하였다. 여러 가지 화학 수식제 중에서 carbodiimide와 N-bromosuccinimide가 효소 활성을 완전히 저해시켜 glutamic acid또는 aspartic acid 잔기와 tryptophan 잔기가 효소의 활성부위에 관여하리라 추측되었다. 각각의 경우에 효소 실활은 수식제의 첨가농도에 따라 pseudo first-order kinetics 양식을 보여주었으며, carbodiimide와 N-bromosuccinimide는 각각 비경쟁적 저해와 경쟁적 저해방식을 나타내었다. 기질첨가에 의한 효소활성 보호실험을 통하여 tryptophan 잔기가 기질결합부위라 판단 되었다. 효소 실활속도의 분석에 의해 효소활성에는 2개의 glutamic acid 또는 aspartic acid 잔기와 1개의 tryptophan 잔기가 관여하는 것으로 나타났다.

Roles of YehZ, a Putative Osmoprotectant Transporter, in Tempering Growth of Salmonella enterica serovar Typhimurium

  • Kim, Seul I;Ryu, Sangryeol;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1560-1568
    • /
    • 2013
  • Salmonella, a main cause of foodborne diseases, encounters a variety of environmental stresses and overcomes the stresses by multiple resistance strategies. One of the general responses to hyperosmotic stress is to import or produce compatible solutes so that cells maintain fluid balance and protect proteins and lipids from denaturation. The ProP and ProU systems are the main transport systems for compatible solutes. The OsmU system, recently identified as a third osmoprotectant transport system, debilitates excessive growth as well by reducing production of trehalose. We studied a fourth putative osmoprotectant transport system, YehZYXW, with high sequence similarity with the OsmU system. A Salmonella strain lacking YehZ, a predicted substrate-binding protein, did not suffer from hyperosmolarity but rather grew more rapidly than the wild type regardless of glycine betaine, an osmoprotectant, suggesting that the YehZYXW system controls bacterial growth irrespective of transporting glycine betaine. However, the growth advantage of ${\Delta}yehZ$ was not attributable to an increase in OtsBA-mediated trehalose production, which is responsible for the outcompetition of the ${\Delta}osmU$ strain. Overexpressed YehZ in trans was capable of deaccelerating bacterial growth vice versa, supporting a role of YehZ in dampening growth. The expression of yehZ was increased in response to nutrient starvation, acidic pH, and the presence of glycine betaine under hyperosmotic stress. Identifying substrates for YehZ will help decipher the role of the YehZYXW system in regulating bacterial growth in response to environmental cues.