DOI QR코드

DOI QR Code

Production of Gamma-Linolenic Acid in Pichia pastoris by Expression of a Delta-6 Desaturase Gene from Cunninghamella echinulata

  • Wan, Xia (Oil Crops Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Yinbo (Oil Crops Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Wang, Ping (Oil Crops Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Huang, Fenghong (Oil Crops Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Chen, Hong (Oil Crops Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Jiang, Mulan (Oil Crops Research Institute, Chinese Academy of Agricultural Sciences)
  • Published : 2009.10.31

Abstract

Gamma-linolenic acid (GLA, C18:3 ${\Delta}^{6,9,12}$) is synthesized by a delta-6 fatty acid desaturase using linoleic acid (LA, C18:2 ${\Delta}^{9,12}$) as a substrate. To enable the production of GLA in the conventional yeast Pichia pastoris, we have isolated a cDNA encoding the delta-6 fatty acid desaturase from Cunninghamella echinulata MIAN6 and confirmed its function by heterogeneous expression in P. pastoris. Sequence analysis indicated that this cDNA sequence has an open reading frame of 1,404 bp, which encodes a 52 kDa peptide of 468 amino acids. This sequence has 64% identity to the previously reported delta-6 fatty acid desaturase from Rhizopus oryzae. The polypeptide has a cytochrome b5 domain at the N-terminus including the HPGG motif in the heme-binding region, as reported for other delta-6 fatty acid desaturases. In addition, this enzyme differs from other desaturases by the presence of three possible N-linked glycosylation sites. Analysis of the fatty acid composition demonstrated the accumulation of GLA to the level of 3.1% of the total fatty acids. Notably, the amounts of ginkgolic acid (C17:1) and palmitic acid (C16:0) were increased from 1.3% to 29.6% and from 15% to 33%, respectively. These results reveal that the modification of the fatty acid biosynthetic pathway by genetic manipulation in order to produce specific polyunsaturated fatty acids in P. pastoris is a promising technique.

Keywords

References

  1. Chen, H. and C. Chang. 1996. Production of$\gamma$-linolenic acid by the fungus Cunninghamella echinulata CCRC31840. Biotechol. Prog. 12: 338-341 https://doi.org/10.1021/bp960009y
  2. Chen, R., S. Tsuda, K. Matsui, M. Fukuchi-Mizutani, M. Ochiai, S. Shimizu, et al. 2005. Production of $\gamma$-linolenic acid in Lotus japonicus and Vigna angularis by expression of the delta-6 fatty acid desaturase gene isolated from Mortierella alpina. Plant Sci. 169: 599-605 https://doi.org/10.1016/j.plantsci.2005.05.005
  3. Dyer, J. M., S. Stymne, A. G. Green, and A. S. Carlsson. 2008. High-value oils from plants. Plant J. 54: 640-655 https://doi.org/10.1111/j.1365-313X.2008.03430.x
  4. Fan, Y. Y. and R. S. Chapkin. 1998. Importance of dietary $\gamma$-linolenic acid in human health and nutrition. J. Nutr. 128: 1411-1414
  5. Fakas, S., M. Čertik, S. Papanikolaou, G. Aggelis, M. Komaitis, and M. Galiotou-Panayotou. 2008. $\gamma$-linolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Bioresour. Technol. 99: 5986-5990 https://doi.org/10.1016/j.biortech.2007.10.016
  6. Fakas, S., S. Papanikolaou, M. Galiotou-Panayotou, M. Komaitis, and G. Aggelis. 2008. Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J. Appl. Microbiol. 105: 1062-1070 https://doi.org/10.1111/j.1365-2672.2008.03839.x
  7. Fakas, S., S. Papanikolaou, M. Galiotou-Panayotou, M. Komaitis, and G. Aggelis. 2006. Lipids of Cunninghamella echinulata with emphasis to$\gamma$-linolenic acid distribution among lipid classes. Appl. Microbiol. Biotechnol. 73: 676-683 https://doi.org/10.1007/s00253-006-0506-3
  8. Flowers, M. T. and J. M. Ntambi. 2008. Role of stearoylcoenzyme A desaturase in regulating lipid metabolism. Curr. Opin. Lipidol. 19: 248-256 https://doi.org/10.1097/MOL.0b013e3282f9b54d
  9. Gema, H., A. Kavadia, D. Dimou, V. Tsagou, M. Komaitis, and G. Aggelis. 2002. Production of $\gamma$-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Appl. Microbiol. Biotechnol. 58: 303-307 https://doi.org/10.1007/s00253-001-0910-7
  10. Hisashi, Y., I. Hitoshi, K. Yasushi, K. Kazuyoshi, A. Tsunehiro, O. Kazuhisa, and U Hiroshi. 2007. Heterologous production of dihomo-$\gamma$-linolenic acid in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 73: 6965-6971 https://doi.org/10.1128/AEM.01008-07
  11. Hong, H., N. Datla, D. W. Reed, P. S. Covello, S. L. Mackenzie, and X. Qiu. 2002. High-level production of gammalinolenic acid in Brassica juncea using a delta-6 desaturase from Pythium irregulare. Plant Physiol. 129: 354-362 https://doi.org/10.1104/pp.001495
  12. Horrobin, D. F. 1992. Nutritional and medical importance of $\gamma$-linolenic acid. Prog. Lipid Res. 31: 163-194 https://doi.org/10.1016/0163-7827(92)90008-7
  13. Horrobin, D. F. 1993. Fatty acid metabolism in health and disease:The role of delta-6 desaturase. Am. J. Clin. Nutr. 57: 732-736
  14. Kapoor, R. and Y. S. Huang. 2006. Gamma linolenic acid: An anti-inflammatory omega-6 fatty acid. Curr. Pharm. Biotechnol. 7: 531-534 https://doi.org/10.2174/138920106779116874
  15. Liang, S., X. Zhang, and H. Wang. 2004. Study on metabolic law of gamma-linolenic acid produced by Cunninghamella echinulata. Biotechnol. (Chinese) 14: 48-50
  16. Laoteng, K., R. Mannontarat, M. Tanticharoen, and S. Cheevadhanarak. 2000. $\delta^{6}$-desaturase of Mucor rouxii with high similarity to plant $\delta^{6}$- desaturase and its heterologous expression in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 279: 17-22 https://doi.org/10.1006/bbrc.2000.3856
  17. Ranong, S. N., K. Laoteng, P. Kittakoop, M. Tanticharoen, and S. Cheevadhanarak. 2006. Targeted mutagenesis of a fatty acid $\delta^{6}$-desaturase from Mucor rouxii: Role of amino acid residues adjacent to histidine-rich motif II. Biochem. Biophys. Res. Commun. 339: 1029-1034 https://doi.org/10.1016/j.bbrc.2005.11.115
  18. Sakuradani, E. and S. Shimizu. 2003. Gene cloning and functional analysis of a second $\delta^{6}$ fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Biosci. Biotechnol. Biochem. 67: 704-711 https://doi.org/10.1271/bbb.67.704
  19. Sakuradani, E., M. Kobayashi, and S. Shimizu. 1999. $\delta^{6}$-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus: Gene cloning and its heterologous expression in a fungus, Aspergillus. Gene 238: 445-453 https://doi.org/10.1016/S0378-1119(99)00359-5
  20. Sayanova, O. and M. A. Smith. 1997. Expression of a borage desaturase cDNA containing an N-terminal cytochrome $\b_{5}$ domain results in the accumulation of high levels of $\delta^{6}$desaturated fatty acid in transgenic tobacco. Proc. Natl. Acad. Sci. U.S.A. 94: 4211-4216 https://doi.org/10.1073/pnas.94.8.4211
  21. Shanklin, J., E. Whittle, and B. G. Fox. 1994. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-coA desaturase, and are conserved in alkane hydroxylase and xylase monooxygenase. Biochemistry 33: 12787-12794 https://doi.org/10.1021/bi00209a009
  22. Sperling, P., H. Schmidt, and E. Heinz. 1995. A cytochrome-b5-containing fusion protein similar to plant acyl lipid desaturase. Eur. J. Biochem. 232: 798-805
  23. Tao, J., L. Zhao, X. Zhang, S. Zhang, H. Wang, and Y. Gu. 2007. Growth law of gamma-linolenic acid production by Cunninghamella echinulata. J. U.S. China Med. Sci. 4: 55-60
  24. Vrinten, P., G. Wu, M. Truksa, and X. Qiu. 2007. Production of polyunsaturated fatty acids in transgenic plants. Biotechnol. Genet. Eng. Rev. 24: 263-279 https://doi.org/10.1080/02648725.2007.10648103
  25. Wang, D., M. Li, D. Wei, Y. Cai, Y. Zhuang, and L. Xing. 2007. Identification and functional characterization of the delta-6 fatty acid desaturase gene from Thamnidium elegans. J. Eukaryot. Microbiol. 54: 110-117 https://doi.org/10.1111/j.1550-7408.2006.00136.x
  26. Wang, H., Z. Deng, S. Zhou, and X. Zhang. 2007. Using potato starch wastewater to produce GLA with Cunninghamella echinulata. China Oils Fats (Chinese) 32: 49-51
  27. Zhang, Q., M. Li, H. Ma, Y. Sun, and L. Xing. 2004. Identification and characterization of a novel $\delta^{6}$-fatty acid desaturase gene from Rhizopus arrhizus. FEBS Lett. 556: 81-85 https://doi.org/10.1016/S0014-5793(03)01380-2

Cited by

  1. Fermentation Process Development of Recombinant Hansenula polymorpha for Gamma-Linolenic Acid Production vol.20, pp.11, 2009, https://doi.org/10.4014/jmb.1003.03004
  2. Effects of Ginkgo biloba Constituents on Fruit-Infesting Behavior of Codling Moth (Cydia pomonella) in Apples vol.59, pp.20, 2009, https://doi.org/10.1021/jf202386c
  3. Molecular cloning and functional characterization of a Δ6‐fatty acid desaturase gene from Rhizopus oryzae vol.53, pp.9, 2013, https://doi.org/10.1002/jobm.201200189
  4. Clone and identification of bifunctional Δ12/Δ15 fatty acid desaturase LKFAD15 from Lipomyces kononenkoae vol.22, pp.2, 2009, https://doi.org/10.1007/s10068-013-0116-7
  5. Characterization of three Δ9-fatty acid desaturases with distinct substrate specificity from an oleaginous fungus Cunninghamella echinulata vol.40, pp.7, 2009, https://doi.org/10.1007/s11033-013-2540-4
  6. Discrimination of Pterocephalus hookeri collected at flowering and non-flowering stages using GC-MS-based fatty acid profiling vol.6, pp.7, 2009, https://doi.org/10.1039/c3ay41947a
  7. Screening and molecular identification of overproducing γ-linolenic acid fungi and cloning the delta 6-desaturase gene : Molecular Identifying, Cloning, Delta 6-Desaturase, GLA vol.62, pp.3, 2015, https://doi.org/10.1002/bab.1281
  8. DHA Production in Escherichia coli by Expressing Reconstituted Key Genes of Polyketide Synthase Pathway from Marine Bacteria vol.11, pp.9, 2016, https://doi.org/10.1371/journal.pone.0162861
  9. Three, two, one yeast fatty acid desaturases: regulation and function vol.33, pp.5, 2009, https://doi.org/10.1007/s11274-017-2257-y
  10. Improved γ-linolenic acid production in Mucor circinelloides by homologous overexpressing of delta-12 and delta-6 desaturases vol.16, pp.None, 2017, https://doi.org/10.1186/s12934-017-0723-8
  11. Recent Molecular Tools for the Genetic Manipulation of Highly Industrially Important Mucoromycota Fungi vol.7, pp.12, 2009, https://doi.org/10.3390/jof7121061