• 제목/요약/키워드: substrate binding

검색결과 440건 처리시간 0.047초

Characterization of the Four GH12 Endoxylanases from the Plant Pathogen Fusarium graminearum

  • Habrylo, Olivier;Song, Xinghan;Forster, Anne;Jeltsch, Jean-Marc;Phalip, Vincent
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권8호
    • /
    • pp.1118-1126
    • /
    • 2012
  • Four putative GH12 genes were found in the Fusarium graminearum genome. The corresponding proteins were expressed in Escherichia coli, purified, and evaluated. FGSG_05851 and FGSG_11037 displayed high activities towards xyloglucan ($V_{max}$ of 4 and $11{\mu}mol/min$, respectively), whereas FGSG_07892 and FGSG_16349 were much less active with this substrate (0.081 and $0.004{\mu}mol/min$, respectively). However, all four of these enzymes had a similar binding affinity for xyloglucan. Xyloglucan was the substrate preferred by FGSG_05851, in contrast to the three other enzymes, which preferred ${\beta}$-glucan or lichenan. Therefore, FGSG_05851 is a xyloglucan-specific glucanase (E.C. 3.2.1.151) rather than an endoglucanase (E.C. 3.2.1.4) with broad substrate specificity. FGSG_11037 displayed a peculiar behavior in that the xyloglucan binding was highly cooperative, with a Hill coefficient of 2.5. Finally, FGSG_05851 essentially degraded xyloglucan into hepta-, octa-, and nonasaccharides, whereas the three other enzymes yielded hepta- and octa-saccharides as well as larger molecules.

Regulatory Mechanism of L-Alanine Dehydrogenase from Bacillus subtilis

  • 김수자;김유진;서미란;전봉숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권12호
    • /
    • pp.1217-1221
    • /
    • 2000
  • L-alanine dehydrogenase from Bacillus subtilis exhibits allosteric kinetic properties in the presence of $ZN^{2+}$. $ZN^{2+}$ induces the binding of substrate (L-alanine) to be cooperative at pH 8.0. The effect of pH variation between pH 7.0 and pH 10.0 on the inhibition by $ZN^{2+}$ correlates with the pH effect on the $K_m$ values for L-alanine within these pH range indicating that $ZN^{2+}$ and substrate compete for the same site. No such cooperativity is induced by $ZN^{2+}$ when the reaction is carried out at pH 10. At this higher pH, $ZN^{2+}$ binds with the enzyme with lower affinity and noncompetitive with respect to L-alanine. Inhibition of L-alanine dehydrogenase by $ZN^{2+}$ depends on the ionic strength. Increase in KCI concentration reduced the inhibition, but allosteric property in $ZN^{2+}$ binding is conserved. A model for the regulatory mechanism of L-alanine dehydrogenase as a noncooperative substrate-cooperative cofactor allosteric enzyme, which is compatible in both concerted and the sequential allosteric mechanism, is proposed.

Crystal Structure of Glycerol Dehydrogenase from Klebsiella pneumoniae

  • Gyeong Soo Ko;Thang Quyet Nguyen;Seri Koh;Wonchull Kang
    • 대한화학회지
    • /
    • 제68권1호
    • /
    • pp.32-39
    • /
    • 2024
  • Glycerol dehydrogenase (GlyDH) plays a crucial role in the glycerol metabolism pathway by catalyzing the oxidation of glycerol to dihydroxyacetone (DHA). Previous studies of GlyDH have predominantly focused on unraveling the structural features of the active site and its binding interactions with ligand. However, the structural details of GlyDH in complex with both NAD+ and the substrate bound have remained elusive. In this study, we present the crystal structures of Klebsiella pneumoniae GlyDH (KpGlyDH) in the absence and presence of NAD+ at a resolution of 2.1 Å. Notably, both structures reveal the binding of the substrate, ethylene glycol, to the zinc ion. Interestingly, a significant change in the coordination number of the zinc ion is observed, with three in the absence of NAD+ and four in its presence. These findings shed light on the structural aspects of GlyDH and its interactions with NAD+ and the substrate.

New Alternative Splicing Isoform and Identification of the Kinase Activity of N-Terminal Kinase-Like Protein (NTKL)

  • Merlin, Jayalal L.P.
    • 통합자연과학논문집
    • /
    • 제6권4호
    • /
    • pp.234-243
    • /
    • 2013
  • N-terminal kinase-like (NTKL) protein was initially identified as a protein binding to protein kinase B (PKB, also known as Akt). Though NTKL-BP1 (NTKL-binding protein 1) has been identified as an NTKL binding protein, its functions related to binding have not yet been elucidated. Here, a new alternative spliced variant of NTKL and its association with integrin ${\beta}1$ is described, in addition to the kinase activity of NTKL and its substrate candidates. Although the phosphorylation of the candidates must be further confirmed using other experimental methods, the observation that NTKL can phosphorylate ROCK1, DYRK3, and MST1 indicates that NTKL may act as a signaling protein to regulate actin assembly, cell migration, cell growth, and to facilitate differentiation and development in an integrin-associated manner.

Characterization of pH-dependent structural properties of hydrolase PncA using NMR

  • Yi, Jong-Jae;Kim, Won-Je;Rhee, Jin-Kyu;Lim, Jongsoo;Lee, Bong-Jin;Son, Woo Sung
    • 한국자기공명학회논문지
    • /
    • 제22권4호
    • /
    • pp.144-148
    • /
    • 2018
  • Catalytic enzyme Pyrazinamidase (PncA) from Mycobacterium tuberculosis can hydrolyze substrate pyrazinamide (PZA) to pyrazoic acid (POA) as active form of compound. Using NMR spectroscopy, pH-dependent catalytic properties were monitored including metal binding mode during converting PZA to POA. There seems to be a conformational change through zinc binding in active site from the perturbation of peak intensities in series of 2D HSQC spectra the conformation changes through zinc binding.

Kinetic Studies of Peptidylprolyl cis-trans Isomerase from Porcine Spleen

  • Kim, Soo-Ja;Lee, Chan
    • BMB Reports
    • /
    • 제29권6호
    • /
    • pp.519-524
    • /
    • 1996
  • Peptidylprolyl cis-trans isomerase (PPlase) catalyzes the cis-trans isomerization of prolyl peptide and facilitates the folding of cellular proteins and peptides. PPlase consists of two distinct immunophilins, each specifically binding to the immunosupressive drug cyclosporin A (CsA) or FK506, respectively. A PPlase was isolated and partially purified from porcine spleen. The molecular weight of porcine spleen PPlase was determined to be ~14,000 on the basis of SDS-PAGE. The purified enzyme was strongly inhibited by FK506, but not by CsA. The inhibition constant and the true concentration of enzyme preparations were determined by active site titration using the tight binding inhibitor FK506: $K_{i}=18.7$ nM and $E_{t}=172$ nM. The equilibrium ratio of conformer. [cis]/[trans], of prolyl peptide substrates (N-Suc-Ala-Xaa-Pro-Phe-p-NA) in anhydrous trifluoroethanol/LiCl solvent system varied from 0.24 to 0.85 depending on the nature of Xaa. Overall. in this solvent-salt system, the populations of the cis conformer of substrates in equilibrium are higher than in an aqueous solution so that the substantial error caused by high background absorption can be reduced. The reactivities of porcine spleen PPlase are shown to be highly sensitive to changes in the structure of substrates. Thus, $k_{cat}/K_m$ value for the most reactive substrate (Xaa Leu) is $4.007+10^{6}M^{1}s^{1}$ and, is 2,636 fold higher than that for the least reactive peptide substrate tested, Xaa=Glu.

  • PDF

Cloning and Iron Transportation of Nucleotide Binding Domain of Cryptosporidium andersoni ATP-Binding Cassette (CaABC) Gene

  • Wang, Ju-Hua;Xue, Xiu-Heng;Zhou, Jie;Fan, Cai-Yun;Xie, Qian-Qian;Wang, Pan
    • Parasites, Hosts and Diseases
    • /
    • 제53권3호
    • /
    • pp.335-339
    • /
    • 2015
  • Cryptosporidium andersoni ATP-binding cassette (CaABC) is an important membrane protein involved in substrate transport across the membrane. In this research, the nucleotide binding domain (NBD) of CaABC gene was amplified by PCR, and the eukaryotic expression vector of pEGFP-C1-CaNBD was reconstructed. Then, the recombinant plasmid of pEGFP-C1-CaNBD was transformed into the mouse intestinal epithelial cells (IECs) to study the iron transportation function of CaABC. The results indicated that NBD region of CaABC gene can significantly elevate the transport efficiency of $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $HCO_3{^-}$ in IECs (P<0.05). The significance of this study is to find the ATPase inhibitors for NBD region of CaABC gene and to inhibit ATP binding and nutrient transport of CaABC transporter. Thus, C. andersoni will be killed by inhibition of nutrient uptake. This will open up a new way for treatment of cryptosporidiosis.

생물학적 자극 통제 수단으로 활용하기 위한 돼지 페로몬성 냄새 물질의 탐색: IV. 2-(Cyclohexyloxy)tetrahydrofurane 유도체와 Porcine Odorant Binding Protein 사이의 결합 친화력에 관한 비교분자 유사성 지수분석(CoMSIA) (The Search of Pig Pheromonal Ordorants for Biostimulation Control System Technology: IV. Comparative Molecular Similarity Indices Analyses (CoMSIA) on the Binding Affinities between Ligands of 2-(Cyclohexyloxy)-tetrahydrofurane Derivatives and Porcine Ordorant Binding Protein)

  • 성낙도;박창식;장석찬;최경섭
    • Reproductive and Developmental Biology
    • /
    • 제30권3호
    • /
    • pp.169-174
    • /
    • 2006
  • 돼지 페르몬성 분자를 탐색하기 위하여 일련의 green odorant로서 기질 분자인 2-(Cyclohexyloxy)tetrahydrofurane 유도체들의 정량적인 구조와 수용체인 porcine odorant binding protein(pOBP) 사이의 결합 친화력 상수($p(Od)_{50}$)에 대한 비교 분자 유사성 지수 분석(CoMSIA)을 실행하였다. 가장 양호한 CoMSIA 모델(I-AI)은 기질 분자내 입체 중심의 절대 배열이 $I:\;C_{1'}(R),\;C_2(S)$인 분자를 atom based fit 정렬하였을 경우의 입체장 조건에서 유도되었으며 PLS 분석 결과, 예측성이 ${r^2}_{cv.}(q^2)=0.856)$ 그리고 적합성이 ${r^2}_{ncv.}=0.964)$ 이었다. 모델의 CoMSIA 등고도 상, pOBP와 냄새 분자 사이의 상호작용으로부터 가장 높은 결합 친화력을 나타내는 분자의 구조적 특정들을 이해할 수 있었다.

Binding of Lichen Phenolics to Purified Secreted Arginase from the Lichen Evernia prunastri

  • Legaz, Maria-Estrella;Vicente, Carlos;Pedrosa, Mercedes M.
    • BMB Reports
    • /
    • 제34권3호
    • /
    • pp.194-200
    • /
    • 2001
  • Secreted arginase from Evernia prunastri thallus has been purified 616-fold from the incubation medium. Purified arginase was resolved as only one peak in a capillary electrophoresis with a pI value of 5.35. The protein contained high amounts of acidic amino acids, such as Asx and Glx, and a relatively high quantity of Ser and Gly. The molecular mass of native, purified arginase was estimated as about 26 kDa by SE-HPLC. Substrate saturated kinetic showed a typical Michaelis-Menten relationship with a K_m value of 3.3 mM L-arginine. Atranorin behaved as a mixed activator of the enzyme (apparent $K_m$ = 0.96 mM); whereas evernic and usnic acid were revealed as non competitive inhibitors (apparent $K_m$ values were 3.16 mM and 3.05 mM, respectively). Kinetics of atranorin binding indicated that saturation was reached from 0.18 ${\mu}mol$ of the total atranorin and the occurrence of multiple sites for the ligand. This agrees with a possible aggregation of several enzyme subunits during the interaction process. A value of binding sites of about 12 was obtained. The binding of evernic acid was saturated from 23 nmol of total phenol. The number of binding sites was about 5. The loss of the binding ability of evernic acid could be interpreted as a single negative cooperatively. Usnic acid behaves in a similar way to evernic acid, although the binding saturation occurs at $0.14\;{\mu}moles$ of the ligand. This binding appears to be unspecific, and has 28 usnic acid binding sites to the protein.

  • PDF