The Search of Pig Pheromonal Ordorants for Biostimulation Control System Technology: IV. Comparative Molecular Similarity Indices Analyses (CoMSIA) on the Binding Affinities between Ligands of 2-(Cyclohexyloxy)-tetrahydrofurane Derivatives and Porcine Ordorant Binding Protein

생물학적 자극 통제 수단으로 활용하기 위한 돼지 페로몬성 냄새 물질의 탐색: IV. 2-(Cyclohexyloxy)tetrahydrofurane 유도체와 Porcine Odorant Binding Protein 사이의 결합 친화력에 관한 비교분자 유사성 지수분석(CoMSIA)

  • Sung, Nack-Do (Division of Applied Biological Chemistry, Chungnam National University) ;
  • Park, Chang-Sik (Research Center for Transgenic Cloned Pigs, Chungnam National University) ;
  • Jang, Seok-Chan (Division of Applied Biological Chemistry, Chungnam National University) ;
  • Choi, Kyung-Seob (Division of Applied Biological Chemistry, Chungnam National University)
  • 성낙도 (충남대학교 농업생명과학대학 응응생물화학부) ;
  • 박창식 (충남대학교 형질전환복제돼지연구센터, 동물자원학부) ;
  • 장석찬 (충남대학교 농업생명과학대학 응응생물화학부) ;
  • 최경섭 (충남대학교 농업생명과학대학 응응생물화학부)
  • Published : 2006.09.30

Abstract

To search of a new porcine pheromonal odorants, the comparative molecular similarity indices analysis(CoMSIA) between porcine odorant binding protein(pOBP) as receptor and ligands of green odorants 2-(Cyclohexyloxy)tetrahydrofurane derivatives as substrate molecule were conducted and disscused quantitatively. In the optimized CoMSIA model(I-AI) with chirality($I:\;C_{1'}(R),\;C_2(S)$) in substrate molecules and atom based fit alignment(AE) of the odorants the statistical PLS results showed the best predictability of the binding affinities based on the LOO cross-validated value ${r^2}_{cv.}\;(q^2=0.856)$ and non cross-validated conventional coefficient(${r^2}_{ncv.}=0.964)$). The structural distinctions of the highest active molecules were able to understand from the interaction between pOBP and green odorants in the contour maps with CoMSIA model.

돼지 페르몬성 분자를 탐색하기 위하여 일련의 green odorant로서 기질 분자인 2-(Cyclohexyloxy)tetrahydrofurane 유도체들의 정량적인 구조와 수용체인 porcine odorant binding protein(pOBP) 사이의 결합 친화력 상수($p(Od)_{50}$)에 대한 비교 분자 유사성 지수 분석(CoMSIA)을 실행하였다. 가장 양호한 CoMSIA 모델(I-AI)은 기질 분자내 입체 중심의 절대 배열이 $I:\;C_{1'}(R),\;C_2(S)$인 분자를 atom based fit 정렬하였을 경우의 입체장 조건에서 유도되었으며 PLS 분석 결과, 예측성이 ${r^2}_{cv.}(q^2)=0.856)$ 그리고 적합성이 ${r^2}_{ncv.}=0.964)$ 이었다. 모델의 CoMSIA 등고도 상, pOBP와 냄새 분자 사이의 상호작용으로부터 가장 높은 결합 친화력을 나타내는 분자의 구조적 특정들을 이해할 수 있었다.

Keywords

References

  1. Abraham MH, Gala JMR, Cometto-Muniz JE, Cain W (2002): A model for odour thresholds. Chern Senses 27:95-104 https://doi.org/10.1093/chemse/27.2.95
  2. Bohm M, Sturzebecher J, Klebe G (1999): Three-dimensional quantitative structure activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J Med Chem 42:58-477
  3. Buck LB (2004): The search for odorant receptors. Commentary Cell 116:S117-S119
  4. Cavaggioni A, Sorbi RT, Keen JN, Pappin DJ, Findlay JB (1987): Homology between the pyrazine-binding protein from nasal mucosa and major urinary protein. FEBS Lett 212:225-228 https://doi.org/10.1016/0014-5793(87)81349-2
  5. Clark M, Cramer III RD, Jones DM, Patterson DE, Simeroth PE (1990): Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases. Tetrahedron Comput Methodol 3: 47-59 https://doi.org/10.1016/0898-5529(90)90120-W
  6. Dal Monte M, Centini M, Anselmi C, Pelosi P (1993): Binding of selected odorants to bovine and porcine odorant-binding proteins. Chem Sences 18:713-721 https://doi.org/10.1093/chemse/18.6.713
  7. Flow DR (1996): The lipocalin protein family: structure and function. Biochem J 318:1-14 https://doi.org/10.1042/bj3180001
  8. Hau KM, Connell DW (1998): Quantitative structure- activity relationships (QSARs) for odor thresholds of volatile organic compounds (VOCs). Indooor Air 8: 23-33 https://doi.org/10.1111/j.1600-0668.1998.t01-3-00004.x
  9. Hildebrand JG (1995): Analysis of chemical signals by nervous systems. Proc Natl Sci USA 92:3-19
  10. Intervert; Sex odor aerosol(SOA), Millsboro, DE 1996. Holland
  11. Klebe G, Abraham U, Mietzner T (1994): Molecular similarity indices in a comparative analysis (Co-MSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130-4146 https://doi.org/10.1021/jm00050a010
  12. Kubinyi H (1993): QSAR; Hansch Analysis and Related Approaches. VCH Weinheim. pp 115-133
  13. Lobel D, Jacob M, Volkner M, Breer H (2002): Odorants of different chemical classes interact with distinct odorant binding protein subtypes. Chem Senses 27:39-44 https://doi.org/10.1093/chemse/27.1.39
  14. Marshall GR, Barry CD, Bosshard HE, Dammkoehler RA, Dunn DA (1979): The conformational parameter in drug design: active analog approach. In; Computer-assisted drug design., Olsen EC and Christoffersen RE (Ed.), Ammerican Chemical Society, Washington, DC pp 205-226
  15. PBS: The leader in animal health & nutrition, PBS Animal Health, PO Box 9101, Canton, Ohio 44711-9101, USA
  16. Pevsner J, Trifiletti RR, Strittmatter SM, Snyder SH (1985): Isolation and charaterization of aan olfactory receptor protein for odorant pyrazines. Proc Natl Acad Sci USA 82:3050-3054
  17. Pearce GP, Hughes PE (1987): An investigation of the roles of boar component stimuli in the expression of proceptivity in the female pit. Appl Anim Behav 18: 287-293 https://doi.org/10.1016/0168-1591(87)90223-1
  18. Reddy MR., Parrill AL (1999): Overview of rational drug design. In Tational Drug Design. Ch. 1., ACS Symposium Series, 719., American Chemical Society, Washington, DC
  19. Rekwot PI, Ogwu D, Oyedipe EO, Sekoni VO (2001): The role of pheromones and bio-stimulation in animal reproduction. Animal Reproduction Science 65: 157-170 https://doi.org/10.1016/S0378-4320(00)00223-2
  20. Rossiter KJ (1996): Structure-odor relationships. Chem Rev 96:3201-3240 https://doi.org/10.1021/cr950068a
  21. Shrestha NP, Edwards S, English PR, Robertson JF (2001): An evaluation of boar pheromone spray to aid the stimulation and detection of estrus in small farms in Nepal. Asian-Aust J Anim Sci 14:697-700 https://doi.org/10.5713/ajas.2001.697
  22. Shykind BM, Rohani SC, O'Donnel S, Nemes A, Mendelsohn M, Sun Y, Axel R, Rarnea G (2004): Gene switching and stability of odorant receptor gene choice. Cell 117:801-815 https://doi.org/10.1016/j.cell.2004.05.015
  23. Spinelli S, Vincent F, Pelosi P, Tegoni M, Cambillau C (2002): Boar salivary lipocalin: Three-dimensional X-ray structure and androstenol/androstenone docking simulations. Eur J Biochem 269:2449-2456 https://doi.org/10.1046/j.1432-1033.2002.02901.x
  24. Sung ND, Kim CH,Jin DI, Park CS (2004): The search of pig pheromonal odorants for biostimulation control system technologies: I. Ligand based molecular shape similarity of 5-androst-16-en-3-one analogous and their physicochemical parameters. Reprod Dev BioI 28:45-52
  25. Sung ND, Park CS, Choi YS, Myung PK (2005): The search of pig pheromonal odorants for biostimulation control system technologies: II. Holographic QSAR model for binding affinities between ligands of volatile odorants molecules and porcine odorant binding protein (pDBP). Reprod Dev Biol 29:43-48
  26. Sung ND, Park CS, Choi YS, Myung PK (2006): The search of pig pheromonal odorants for biostimulation control system technologies: III. Comparative molecular similarity indices analysis (CoMFA) on the binding affinities between ligands of 2-(cyclo-hexyloxy)tetrahydrofurane derivatives and porcine odorant binding protein. Reprod Dev Biol 30:13-19
  27. SYBYL (Ver. 7.1), Tripos Associates, Inc, 1699 S. Hanley Rd., Suite 303, St. Louis, MO. 63144-2913, USA
  28. Thibaut U (1993): Applications of CoMFA and Related 3D-QSAR Approaches. In; 3D-QSAR Drug Design, Theory, Methods and Applications., (H. Kubinyi Ed.) ESCOM. Leiden, Germany, pp. 661-696
  29. Vincent F, Spinelli S, Ramoni R, Grolli S, Pelosi P, Cambillau C, Tegon M (2000): Complexes of porcine odorant binding protein with odorant molecules belonging to different chemical classes. J Mol BioI 300: 127-139 https://doi.org/10.1006/jmbi.2000.3820
  30. Wold S, Sjostrom M, Eriksson L (2001): PLS-regression: A basic tool of chemometrics. Chemom Intell Lab Syst 58:109-130 https://doi.org/10.1016/S0169-7439(01)00155-1