Browse > Article
http://dx.doi.org/10.4014/jmb.1112.11019

Characterization of the Four GH12 Endoxylanases from the Plant Pathogen Fusarium graminearum  

Habrylo, Olivier (Laboratoire d'Ingenierie des Polymeres pour les Hautes Technologies, Universite de Strasbourg)
Song, Xinghan (Laboratoire d'Ingenierie des Polymeres pour les Hautes Technologies, Universite de Strasbourg)
Forster, Anne (Laboratoire d'Ingenierie des Polymeres pour les Hautes Technologies, Universite de Strasbourg)
Jeltsch, Jean-Marc (Laboratoire d'Ingenierie des Polymeres pour les Hautes Technologies, Universite de Strasbourg)
Phalip, Vincent (Laboratoire d'Ingenierie des Polymeres pour les Hautes Technologies, Universite de Strasbourg)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.8, 2012 , pp. 1118-1126 More about this Journal
Abstract
Four putative GH12 genes were found in the Fusarium graminearum genome. The corresponding proteins were expressed in Escherichia coli, purified, and evaluated. FGSG_05851 and FGSG_11037 displayed high activities towards xyloglucan ($V_{max}$ of 4 and $11{\mu}mol/min$, respectively), whereas FGSG_07892 and FGSG_16349 were much less active with this substrate (0.081 and $0.004{\mu}mol/min$, respectively). However, all four of these enzymes had a similar binding affinity for xyloglucan. Xyloglucan was the substrate preferred by FGSG_05851, in contrast to the three other enzymes, which preferred ${\beta}$-glucan or lichenan. Therefore, FGSG_05851 is a xyloglucan-specific glucanase (E.C. 3.2.1.151) rather than an endoglucanase (E.C. 3.2.1.4) with broad substrate specificity. FGSG_11037 displayed a peculiar behavior in that the xyloglucan binding was highly cooperative, with a Hill coefficient of 2.5. Finally, FGSG_05851 essentially degraded xyloglucan into hepta-, octa-, and nonasaccharides, whereas the three other enzymes yielded hepta- and octa-saccharides as well as larger molecules.
Keywords
Xyloglucanase; Fusarium; glycosyl hydrolases; cooperativity;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bauer, W. D., K. W. Talmadge, K. Keegstra, and P. Albersheim. 1973. The structure of plant cell walls: II. The hemicellulose of the walls of suspension-cultured sycamore cells. Plant Physiol. 51: 174-187.   DOI   ScienceOn
2 Boukari, I., M. O'Donohue, C. Remond, and B. Chabbert. 2011. Probing a family GH11 endo-${\beta}$-1,4-xylanase inhibition mechanism by phenolic compounds: Role of functional phenolic groups. J. Mol. Catal. B Enzym. 72: 130-138.   DOI   ScienceOn
3 Bukhtoyarov, F. E., B. B. Ustinov, T. N. Salanovich, A. I. Antonov, A. V. Gusakov, O. N. Okunev, and A. P. Sinitsyn. 2004. Cellulase complex of the fungus Chrysosporium lucknowense: Isolation and characterization of endoglucanases and cellobiohydrolases. Biokhimiya 69: 666-677.
4 Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009 The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238.   DOI   ScienceOn
5 Carapito, R., D. Hatsch, S. Vorwerk, E. Petkovski, J.-M. Jeltsch, and V. Phalip. 2008. Gene expression in Fusarium graminearum grown on plant cell wall. Fungal Genet. Biol. 45: 738-748.   DOI   ScienceOn
6 Carapito, R., C. Carapito, J.-M. Jeltsch, and V. Phalip. 2009. Efficient hydrolysis of hemicellulose by a Fusarium graminearum xylanase blend produced at high levels in Escherichia coli. Bioresour. Technol. 100: 845-850.   DOI   ScienceOn
7 Gloster, T. M., F. M. Ibatullin, K. Macauley, J. M. Eklof, S. Roberts, J. P. Turkenburg, et al. 2007. Characterization and three-dimensional structures of two distinct bacterial xyloglucanases from families GH5 and GH12. J. Biol. Chem. 282: 19177-19189.   DOI   ScienceOn
8 Goedegebuur, F., T. Fowler, J. Phillips, P. van der Kley, P. van Solingen, L. Dankmeyer, and S. D. Power. 2002. Cloning and relational analysis of 15 novel fungal endoglucanases from family 12 glycosyl hydrolase. Curr. Genet. 41: 89-98.   DOI   ScienceOn
9 Grishutin, S. G., A. V. Gusakov, A. V. Markov, B. B. Ustinov, M. V. Semenova, and A. P. Sinitsyn. 2004. Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim. Biophys. Acta 1674: 268-281.   DOI   ScienceOn
10 Grover, A. K., D. D. MacMurchie, and R. J. Cushley. 1977. Studies on almond emulsin ${\beta}D$-glucosidase I. Isolation and characterization of a bifunctional isozyme. Biochim. Biophys. Acta 482: 98-108.   DOI   ScienceOn
11 Hasper, A. A., E. Dekkers, M. Van Mil, P. J. I. Van de Vondervoort, and L. H. De Graaff. 2002. EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl. Environ. Microbiol. 68: 1556-1560.   DOI   ScienceOn
12 Hatsch, D., V. Phalip, and J.-M. Jeltsch. 2004. Use of genes encoding cellobiohydrolase-C and topoisomerase II as targets for phylogenetic analysis and identification of Fusarium. Res. Microbiol. 155: 290-296.   DOI   ScienceOn
13 Hayashi, T. 1989. Xyloglucans in the primary-cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 139-168.   DOI   ScienceOn
14 Ishida, T., K. Yaoi, A. Hiyoshi, K. Igarashi, and M. Samejima. 2007. Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete Phanerochaete chrysosporium. FEBS J. 274: 5727-5736.   DOI   ScienceOn
15 Lipchock, J. M. and J. P. Loria. 2010. Nanometer propagation of millisecond motions in V-type allostery. Structure 18: 1596-1607.   DOI   ScienceOn
16 Master, E. R., Y. Zheng, R. Storms, A. Tsang, and J. Powlowski. 2008. A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger: Recombinant expression, purification and characterization. Biochem. J. 411: 161-170.   DOI   ScienceOn
17 Mitchell, D. B., K. Weimann, B. J. Vogel, L. Pasamontes, and A. P. G. M. van Loon. 1997. The phytase subfamily of histidine acid phosphatases: Isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143: 245-252.   DOI   ScienceOn
18 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
19 Phalip, V., F. Delalande, C. Carapito, F. Goubet, D. Hatsch, E. Leize-Wagner, et al. 2005. Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr. Genet. 48: 366-379.   DOI   ScienceOn
20 Phalip, V., F. Goubet, R. Carapito, and J.-M. Jeltsch. 2009. Plant cell wall degradation with a powerful Fusarium graminearum enzymatic arsenal. J. Microbiol. Biotechnol. 19: 573-581.
21 Powlowski, J., S. Mahajan, M. Schapira, and E. R. Master. 2009. Substrate recognition and hydrolysis by a fungal xyloglucanspecific family 12 hydrolase. Carbohyd Res. 344: 1175-1179.   DOI   ScienceOn
22 Sandgren, M., J. Stahlberg, and C. Mitchinson. 2005. Structural and biochemical studies of GH family 12 cellulases: Improved thermal stability, and ligand complexes. Prog. Biophys. Mol. Biol. 89: 246-291.   DOI   ScienceOn
23 Vlasenko, E., M. Schulein, J. Cherry, and F. Xu. 2010. Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol. 101: 2405-2411.   DOI   ScienceOn