• Title/Summary/Keyword: subspace tracking

Search Result 37, Processing Time 0.022 seconds

Blind Adaptive Multiuser Detection for the MC-CDMA Systems Using Orthogonalized Subspace Tracking

  • Ali, Imran;Kim, Doug-Nyun;Lim, Jong-Soo
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • In this paper, we study the performance of subspace-based multiuser detection techniques for multicarrier code-division multiple access (MC-CDMA) systems. We propose an improvement in the PASTd algorithm by cascading it with the classical Gram-Schmidt procedure to orthonormalize the eigenvectors after their sequential extraction. The tracking of signal subspace using this algorithm, which we call OPASTd, has a faster convergence as the eigenvectors are orthonormalized at each discrete time sample. This improved PASTd algorithm is then used to implement the subspace blind adaptive multiuser detection for MC-CDMA. We also show that, for multiuser detection, the complexity of the proposed scheme is lower than that of many other orthogonalization schemes found in the literature. Extensive simulation results are presented and discussed to demonstrate the performance of the proposed scheme.

  • PDF

Multiple Target Angle Tracking Algorithm Using Angular Innovation Extracted from Signal Subspace (신호 부공간에서 구한 방위각 이노베이션을 이용한 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo;Lee, Su-Hyoung;Lee, Kyun-Kyung
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.20-26
    • /
    • 1999
  • In this paper, a multiple target angle tracking algorithm that can avoid data association problem and has a simple structure is proposed by obtaining the angular innovation of the targets from a signal subspace. The signal subspace is recursively estimated by a signal subspace tracking algorithm, such as PAST. A nonlinear matrix equation which satisfy the estimated signal subspace and the angular innovation is induced and expanded into a Taylor series for linear approximation. The angular innovation is obtained by solving the approximated linear matrix equation in the least square sense. The good performance of the proposed algorithm is demonstrated by various computer simulations.

  • PDF

Robust MVDR Adaptive Array by Efficient Subspace Tracking (효율적인 부공간 추적에 의한 강인한 MVDR 적응 어레이)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.148-156
    • /
    • 2014
  • In the MVDR (minimum variance distortionless response) adaptive array, its performance could be greatly deteriorated in the presence of steering vector errors as the desired signal is treated as an interference. This paper suggests an computationally simple adaptive beamforming method which is robust against these errors. In the proposed method, a minimization problem that is formulated according to the DCB (doubly constrained beamforming) principle is solved to find a solution vector, which is in turn projected onto a subspace to obtain a new steering vector. The minimization problem and the subspace projection are dealt with using some principal eigenpairs, which are obtained using a modified PASTd(projection approximation subspace tracking with deflation). We improve the existing MPASTd(modified PASTd) algorithm such that the computational complexity is reduced. The proposed beamforming method can significantly reduce the complexity as compared with the conventional ones directly eigendecomposing an estimate of the corelation matrix to find all eigenvalues and eigenvectors. Moreover, the proposed method is shown, through simulation, to provide performance improvement over the conventional ones.

The DOA Estimation of Wide Band Moving Sources

  • Cho, Mun-Hyeong
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • In this paper, a new method is proposed for tracking the direction-of-arrival (DOA) of the wideband moving source incident on uniform linear array sensors. DOA is estimated by focusing transformation matrices. To update focusing matrices along with new data snap shots, we use the FAST (Fast Approximate Subspace Tracking) method. Present focusing matrices are constructed by previous signal and its orthogonal basis vectors as well as present signal and its orthogonal basis vectors, which are the left and right singular vectors of the inner product of two approximated matrices. Simulation results are shown to illustrate the performance of the proposed method.

SEQUENTIAL EM LEARNING FOR SUBSPACE ANALYSIS

  • Park, Seungjin
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.698-701
    • /
    • 2002
  • Subspace analysis (which includes PCA) seeks for feature subspace (which corresponds to the eigenspace), given multivariate input data and has been widely used in computer vision and pattern recognition. Typically data space belongs to very high dimension, but only a few principal components need to be extracted. In this paper I present a fast sequential algorithm for subspace analysis or tracking. Useful behavior of the algorithm is confirmed by numerical experiments.

  • PDF

Direct position tracking method for non-circular signals with distributed passive arrays via first-order approximation

  • Jinke Cao;Xiaofei Zhang;Honghao Hao
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.421-431
    • /
    • 2024
  • In this study, a direct position tracking method for non-circular (NC) signals using distributed passive arrays is proposed. First, we calculate the initial positions of sources using a direct position determination (DPD) approach; next, we transform the tracking into a compensation problem. The offsets of the adjacent time positions are calculated using a first-order Taylor expansion. The fusion calculation of the noise subspace is performed according to the NC characteristics. Because the proposed method uses the signal information from the previous iteration, it can realize automatic data associations. Compared with traditional DPD and two-step localization methods, our novel process has lower computational complexity and provides higher accuracy. Moreover, its performance is better than that of the traditional tracking methods. Numerous simulation results support the superiority of our proposed method.

Study of Subspace Tracking Methods for Estimating DOA of Linearly Closely Spaced Time-Varying Signals (DOA 추정을 위한 Subspace Tracking 기법들 간의 성능 비교)

  • 강경훈;유경렬
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.623-626
    • /
    • 2001
  • 센서 array 신호처리에서 DOA(direction of arrival)의 추정에 사용되고 있는 root-MUSIC, TLS-ESPRIT 등과 같은 고해상도 스펙트럼 추정 기법들은 과다한 연산량으로 인하여 실시간 구현이 어렵고, 신호들의 DOA가 근접한 경우에서는 추적 성능이 매우 불안정하게 된다. 이러한 문제점에 대한 대안으로 여러 형태의 부공간 추적 개념을 사용하는 수치기법이 제안되어 왔다 [2], [4], [6]. 본 논문에서는 이들 부공간 추정 기법들을 LS-ESPRIT 기법에 접목하여 그 성능을 비교하고, 개선 방안을 제시하였다.

  • PDF

Signal-Subspace-Based Simple Adaptive Array and Performance Analysis (신호 부공간에 기초한 간단한 적응 어레이 및 성능분석)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • Adaptive arrays reject interferences while preserving the desired signal, exploiting a priori information on its arrival angle. Subspace-based adaptive arrays, which adjust their weight vectors in the signal subspace, have the advantages of fast convergence and robustness to steering vector errors, as compared with the ones in the full dimensional space. However, the complexity of theses subspace-based methods is high because the eigendecomposition of the covariance matrix is required. In this paper, we present a simple subspace-based method based on the PASTd (projection approximation subspace tracking with deflation). The orignal PASTd algorithm is modified such that eigenvectora are orthogonal to each other. The proposed method allows us to significantly reduce the computational complexity, substantially having the same performance as the beamformer with the direct eigendecomposition. In addition to the simple beamforming method, we present theoretical analyses on the SINR (signal-to-interference plus noise ratio) of subspace beamformers to see their behaviors.

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

Multiple Target DOA Tracking Algorithm Applicable to Arbitrarily Shaped Array (임의형상 배열센서에 적용 가능한 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • Ryu et al. proposed a multiple target DOA tracking algorithm using a linear sensor array. In Ryu's algorithm first, the signal subspace is estimated using sensor output and the angular innovations of targets are extracted from the estimated signal subspace. Next, the DOA's of targets are tracked using the angular innovations as the inputs of Kalman filters. Ryu's algorithm has good features that it has no data association problem and is efficient. However, Ryu's algorithm can't be a lied to an arbitrarily shaped array because it was proposed using linear sensor array. Actually, when the sensor array is used in the various application fields, sensors have a position error. Therefore, the sensor array can be an arbitrarily shaped array. In this paper, we propose a multiple target DOA tracking algorithm applicable to an arbitrarily shaped array, and it sustains the good features of Ryu's algorithm.