• Title/Summary/Keyword: subspace identification method

Search Result 62, Processing Time 0.027 seconds

Recursive State Space Model Identification Algorithms Using Subspace Extraction via Schur Complement

  • Takei, Yoshinori;Imai, Jun;Wada, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.525-525
    • /
    • 2000
  • In this paper, we present recursive algorithms for state space model identification using subspace extraction via Schur complement. It is shown that an estimate of the extended observability matrix can be obtained by subspace extraction via Schur complement. A relationship between the least squares residual and the Schur complement matrix obtained from input-output data is shown, and the recursive algorithms for the subspace-based state-space model identification (4SID) methods are developed. We also proposed the above algorithm for an instrumental variable (IV) based 4SID method. Finally, a numerical example of the application of the algorithms is illustrated.

  • PDF

Determination of flutter derivatives by stochastic subspace identification technique

  • Qin, Xian-Rong;Gu, Ming
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.173-186
    • /
    • 2004
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. In this paper, one popular stochastic system identification technique, covariance-driven Stochastic Subspace Identification(SSI in short), is firstly presented for estimation of the flutter derivatives of bridge decks from their random responses in turbulent flow. Secondly, wind tunnel tests of a streamlined thin plate model and a ${\Pi}$ type blunt bridge section model are conducted in turbulent flow and the flutter derivatives are determined by SSI. The flutter derivatives of the thin plate model identified by SSI are very comparable to those identified by the unifying least-square method and Theodorson's theoretical values. As to the ${\Pi}$ type section model, the effect of turbulence on aerodynamic damping seems to be somewhat notable, therefore perhaps the wind tunnel tests for flutter derivative estimation of those models with similar blunt sections should be conducted in turbulent flow.

Identification of the air separation unit using subspace-based method

  • Lee, donghoon;sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.52.4-52
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Wiener system identification problem $\textbullet$ Identification method $\textbullet$ Simulation $\textbullet$ Conclusions $\textbullet$ References

  • PDF

System identification of a super high-rise building via a stochastic subspace approach

  • Faravelli, Lucia;Ubertini, Filippo;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.133-152
    • /
    • 2011
  • System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.

Blind Signal Subspace-Based Channel Identification for DS/CDMA DM Downlink (DS/CDMA DMB 하향 링크에서의 신호 공간에 기초한 블라인드 채널 추정)

  • Yang Wan-Chul;Lee Byung-Seub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.848-855
    • /
    • 2004
  • In this paper, we propose a new channel identification technique for long code DS/CDMA DMB down link system which estimate the channel response based on the signal space vector only, unlike the most conventional subspace method relying on the orthogonal property of noise space vectors to the signal space vector. Because of this property of the proposed method, it is optimum and practical in manipulation of the covariance matrix to be analyzed. In the paper, we derive the mathematical expression necessary to clarify the proposed method and show the relevant simulation and numerical results to verify the validity of the proposed algorithm.

State-Space Model Identification of Tandem Cold Mill Based on Subspace Method (부분공간법을 이용한 연속 냉간압연기의 상태공간모델 규명)

  • Kim, In-Su;Hwang, Lee-Cheol;Lee, Man-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.290-302
    • /
    • 2000
  • In this paper, we study on the identification of discrete-time state-space model for robust control of tandem cold mill, using a MOESP(MIMO output-error state-space model identification) algorithm based on subspace method. It is shown that the identified model is well adapted to input-output data sets, which are obtained from nonlinear mathematical equations of tandem cold mill. Furthermore, deterministic H$\infty$ norm bounds on uncertainties including modeling errors and disturbances are quantitatively identified in the frequency domain. Finally, the results give a basic idea to determine weighting functions included in formulating some robust control problems of tandem cold mill.

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.

Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation

  • Meng, Fanhao;Yu, Jingjun;Alaluf, David;Mokrani, Bilal;Preumont, Andre
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2019
  • This paper addresses the problem of damage detection in suspension bridge hangers, with an emphasis on the modal flexibility method. It aims at evaluating the capability and the accuracy of the modal flexibility method to detect and locate single and multiple damages in suspension bridge hangers, with different level of severity and various locations. The study is conducted numerically and experimentally on a laboratory suspension bridge mock-up. First, the covariance-driven stochastic subspace identification is used to extract the modal parameters of the bridge from experimental data, using only output measurements data from ambient vibration. Then, the method is demonstrated for several damage scenarios and compared against other classical methods, such as: Coordinate Modal Assurance Criterion (COMAC), Enhanced Coordinate Modal Assurance Criterion (ECOMAC), Mode Shape Curvature (MSC) and Modal Strain Energy (MSE). The paper demonstrates the relative merits and shortcomings of these methods which play a significant role in the damage detection ofsuspension bridges.

Identification of Linear Model of Tandem Cold Mill Using N4SID Algorithm (N4SID 알고리즘을 이용한 연속 냉간 압연기의 선형모델 규명)

  • 엄상오;황이철;김윤식;김종윤;박영산
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.895-905
    • /
    • 1999
  • This paper identifies a linear time-invariant mathematical model of each stand of a five-stand tandem cold mill to design a robust $H_\infty$ thickness controller by applying input and output data sets to N4SID (Numerical algorithms for Subspace State Space System Identification) method. The input-output data sets describe interstand interference in the process of tandem cold rolling and are obtained from a nonlinear simulator of the tandem cold mill. In result, it is shown that the identified model well approximates the nonlinear model than a Taylor linearized model. Furthermore, uncertainties including roll eccentricity and incoming strip variation are quantitatively analyzed from the plot of maximum singular values.

  • PDF