• 제목/요약/키워드: subsonic

검색결과 339건 처리시간 0.032초

복합재료날개의 적층각에 대한 플러터 특성 연구 (Flutter characteristics of a Composite Wing with Various Ply Angles)

  • 유재한;김동현;이인
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.126-130
    • /
    • 2000
  • In this study, flutter characteristics of a composite wing have been studied for the variation of laminate angles in the subsonic, transonic and supersonic flow regime. The laminate angles are selected by the aspect of engineering practice such as 0, $\pm$45 and 90 degrees. To calculate the unsteady aerodynamics for flutter analysis, the Doublet Lattice Method(DLM) in subsonic flow and the Doublet Point Method(DPM) in supersonic flow are applied in the frequency domain. In transonic flow, transonic small disturbance(TSD) code is used to calculate the nonlinear unsteady aerodynamics in the time domain. Aeroelastic governing equation has been solved by v-g method in the frequency domain and also by Coupled Time-Integration Method(CTIM) in the time domain. from the results of present study, characteristics of free vibration responses and aeroelastic instabilities of a composite wing are presented for the set of various lamination angles in the all flow range.

  • PDF

아음속풍동 시험에서의 불확도 해석 (Uncertainty Analysis for Subsonic Wind Tunnel Testing)

  • 권기정;성봉주
    • 한국항공우주학회지
    • /
    • 제30권4호
    • /
    • pp.123-130
    • /
    • 2002
  • 아음속풍동을 이용한 항공기 모델의 공력 측정 시험에 있어 시험 모델의 제작에서부터 자료 획득, 처리 및 표현에 이르는 일련의 모든 과정은 오차를 수반하고 있다. 따라서 시험에서 얻어진 최종적인 공력 결과를 신뢰하고 실제 항공기의 공력 특성으로 사용하기 위해서는 측정결과에 대한 불확도 정도를 알아야 한다. 본 논문에서는 아음속풍동 시험에서 공력 계수 측정에 적용되는 불확도 분석 및 표현 방법에 대하여 나타내었다.

Inverse 기법을 이용한 아음속/천음속 익형 설계 (Subsonic/Transonic Airfoil Design Using an Inverse Method)

  • 이영기;이재우;변영환
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.46-53
    • /
    • 1998
  • An inverse method for the subsonic and transonic airfoil design was developed using the Euler equations. Two testcases were performed. One was a verification of the method using the supercritical airfoil of the Korean mid-sized (100 passengers class) transport aircraft. The other was the design of an airfoil showing a good cruising performance (L/D ratio) in the high subsonic flow regime. These testcases demonstrated the efficiency and the robustness of the design method in the present study.

  • PDF

노즐내 물체의 후류가 아음속 이차원 제트구조에 미치는 영향에 관한 연구 (Effect of a Turbulent Wake on Two-Dimensional Subsonic Jet)

  • 김태호;이상찬;윤복현;오대근;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.986-991
    • /
    • 2003
  • A turbulent wake generated by a cylinder in nozzle contraction affects to the jet flow characteristics. In this study, a computational work to investigate the effect of the turbulent wake on two-dimensional subsonic jet was carried out with three different kinds of nozzle. Computations are applied to the two-dimensional unsteady, Navier-Stokes equations. Several kinds of turbulent models and wall functions are employed to validate the computational predictions. It was known that the wake flow enhanced the spread of the jet flow, compared with no wake flow condition. It was also found that the jet core is shortened by the wake flow developed from a control cylinder.

  • PDF

Unsteady Aerodynamic Characteristics of an Accelerating or Decelerating Aerofoil

  • Lee, Y-K;Kim, H-D.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.347-352
    • /
    • 2004
  • The unsteady aerodynamic characteristics of an aerofoil gradually accelerating or decelerating at subsonic speeds are investigated through two-dimensional, unsteady, compressible Navier-Stokes simulations. An acceleration factor is defined to provide various acceleration or deceleration characters of the time-dependent flow over the aerofoil. The results show that an increase in the absolute value of the non-dimensional acceleration factor leads to a lesser change in the location and range of flow featues such as shockwave and boundary layer separation in a specific time range. Generally, the gradual speed-up and speed-down of the subsonic aerofoil results in different aerodynamic characteristics whose changes are more significant at angles of attack.

  • PDF

Nonlinear vibration of laminated composite plates subjected to subsonic flow and external loads

  • Norouzi, Hamed;Younesian, Davood
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1261-1280
    • /
    • 2016
  • We study chaotic motion in a nonlinear laminated composite plate under subsonic fluid flow and a simultaneous external load in this paper. We derive equations of motion of the plate using the von-$K{\acute{a}}rm{\acute{a}}n^{\prime}s$ hypothesis and the Hamilton's principle. Galerkin's approach is adopted as the solution method. We then conduct a divergence analysis to obtain critical velocities of the transient flow. Melnikov's integral approach is used to find the critical parameters in which chaos takes place. Effects of different parameters including the aspect ratio, plate material and the ply angle in laminates on the critical flow speed are investigated. In a parametric study, we show that how the linear and nonlinear stiffness of the plate and the load frequency and amplitude would influence the chaotic behavior of the plate.

아음속 유동에서 그리드핀 유도무기의 공력특성 분석을 위한 실험적연구 (Experimental Study on Aerodynamic Characteristics for Missile Configuration With Grid Fins in Subsonic Flow)

  • 이영빈;이창구;이종건;김성철;김남균
    • 한국항공우주학회지
    • /
    • 제49권9호
    • /
    • pp.721-727
    • /
    • 2021
  • 본 논문에서는 아음속유동에서 그리드핀 유도무기의 공력특성을 실험적연구를 통하여 기술하였다. 그리드핀 형상에 의한 영향을 살펴보기 위해 폐쇄율을 달리한 그리드핀 형상모델을 이용하였다. 공기역학적특성을 살펴보기 위해 그리드핀 포함 유도무기 형상의 6성분 공기역학적 힘과 모멘트를 측정하여 레이놀즈수에 의한 영향, 그리드핀 형상에 의한 영향, 조종성능 등을 알아보았다.

아음속 유동에서의 발사체의 공력특성에 관한 실험 연구 (Experimental study on aerodynamic characteristics of launcher at subsonic speed)

  • 노오현;이동호;김원욱;김철완
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.608-613
    • /
    • 1988
  • Subsonic aerodynamic force and moment characteristics have been determined for parametric groups of launchers. Geometric variables considered in the experimental study were body length, nose planform, fin planform (body-alone contained), number of stage and existence of extrnal booster, All data were obtained for angles of attack from 0 to 27 deg in 3-deg. increments.

  • PDF

아음속 난류 유동 영역에서 지면 효과를 갖는 2차원 에어포일의 특성 (Two-Dimensional Airfoil Characteristics under ground effect in Subsonic Turbulent Flow Regimes)

  • 임예훈;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.61-65
    • /
    • 1997
  • A two-dimensional airfoil under ground effect in subsonic turbulent flow is calculated by sieving the Navier-Stokes equation. Some numerical results for different NACA four-digit airfoils are presented. The numerical results show that the lift and drag coefficients are strongly influenced by the shape of the region between the lower surface of airfoil and the ground In general, the airfoil with large camber and small thickness is suitable for WIG vehicles

  • PDF

Stability Research on Aerodynamic Configuration Design and Trajectory Analysis for Low Altitude Subsonic Unmanned Air Vehicle

  • Rafique, Amer Farhan;He, LinShu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.690-699
    • /
    • 2008
  • In this paper a conventional approach for design and analysis of subsonic air vehicle is used. First of all subsonic aerodynamic coefficients are calculated using Computational Fluid Dynamics(CFD) tools and then wind-tunnel model was developed that integrates vehicle components including control surfaces and initial data is validated as well as refined to enhance aerodynamic efficiency of control surfaces. Experimental data and limited computational fluid dynamics solutions were obtained over a Mach number range of 0.5 to 0.8. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is comparable to previously tested subsonic vehicle models. Mathematical model of the dynamic equations in 6-Degree of Freedom(DOF) is then simulated using MATLAB/SIMULINK to simulate trajectory of vehicle. Effect of altitude on range, Mach no and stability is also shown. The approach presented here is suitable enough for preliminary conceptual design. The trajectory evaluation method devised accurately predicted the performance for the air vehicle studied. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of similar air vehicle simulations. We execute a set of example problems which solve the dynamic equations to find the aircraft trajectory given specified control inputs.

  • PDF