• Title/Summary/Keyword: subsea space

Search Result 67, Processing Time 0.02 seconds

Trends and Plans of Subsea Space Creation and Utilization Technology (해저공간창출 및 활용기술 동향과 계획)

  • Taek Hee Han;Hyemin Hong;Sungwon Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.89-90
    • /
    • 2021
  • Undersea bases built in the deep sea are built in more extreme environments than in space. In addition, it requires the convergence of mechanics, electronics, shipbuilding, meteorology, and diving science, marine physics, chemistry, biology, and geology. Undersea base can be constructed through the fusion of various technologies. The development of extreme technology for undersea construction will be the most advanced technology in each field, and it will be applied to space and other fields, so it will be an opportunity to preempt the latest technology.

  • PDF

Study on flexible segment efficiency for seismic performance improvement of subsea tunnel (해저터널 내진성능 향상을 위한 Flexible segment 효용성 연구)

  • Jang, Dong-In;Kim, Jong-Ill;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.503-515
    • /
    • 2017
  • Underground structures that have recently become larger are required to be stable not only during normal times but also during earthquakes. Especially, it is very important to maintain the stability of the subsea tunnels during the earthquake. The objective of this paper is to verify the effectiveness of the flexible segment, which is one of the breakthrough facilities to maintain the stability of the subsea tunnel during the earthquake using the shaking table test. Another goal of this paper is to propose the optimum position of the flexible segment through 3D dynamic numerical analysis based on the verified results from shaking table tests. The 1g shaking table test considering the similarity ratio (1:100) to the cross section of the selected artificial subsea tunnel was carried out considering the Geongju and Artificial seismic waves, longitudinal and lateral wave, and with/without flexible segments eight times or more. As a result of the shaking table test, it was confirmed that the flexible segment is effective in improving the seismic performance of the undersea tunnel in all the experimental results. In addition, 3D dynamic numerical analysis was performed to select the optimum position of the flexible segment which is effective for improving seismic performance. As a result, it was confirmed that the seismic acceleration is attenuated when the flexible segment is installed adjacent to the branch section in subsea tunnel.

An Analytical Study on Rational use of Undersea Space (해저공간의 합리적 활용을 위한 분석적 연구)

  • Won-Jo Jung;Nam-Ki Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.147-154
    • /
    • 2023
  • This study aims to determine the necessity, role, utilization, and operation and management plan in relation to the underwater space platform where humans can newly reside. It provides a comprehensive opinion on the need for creating undersea space and operation plans based on opinions of industry-university-affiliated organizations involved in the R&D project of the Ministry of Maritime Affairs and Fisheries for the utilization of undersea space and external experts participating in marine technology development. In this study, a survey was conducted on researchers participating in the construction of a Korean submarine space platform. FGI was conducted on marine technology development experts. Results were then derived. As a result of the analysis, the need for subsea space construction was found to be high. As for the role of subsea space, the most common opinion was to develop technology for utilizing subsea space and to secure marine science research functions. It was found that the creation of subsea space would have a positive impact on the domestic industry, especially the deep-sea development industry and the shipbuilding/offshore structure industry. In terms of utilization, after the end of the seabed space test bed, the response to utilization as a marine observation base and marine ecosystem research had the highest proportion. As for expected inconvenience, discomfort in the psychological environment was the highest. Experts suggest that securing a continuous budget is most important for stable operation in the future and that securing a manpower budget is essential for itemized budgets. In addition, it was judged that it would be appropriate to establish a prior agreement from the time of the prior agreement and prepare a countermeasure before proceeding with the project in order to ensure ownership issues, consignment management issues, and cost issues when using the project after the end of the project.

Studies of application of artificial ground freezing for a subsea tunnel under high water pressure - focused on case histories - (고수압 해저터널 건설을 위한 동결공법 적용성에 관한 연구 - 사례를 중심으로 -)

  • Son, Young-Jin;Lee, Kyu-Won;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.431-443
    • /
    • 2014
  • In this paper case studies of artificial ground freezing, which have not been applied in Korea, have been investigated for the water cut-off in a subsea tunnel under high water pressure and the most commonly used cooling mediums of brine and liquid nitrogen are examined. Since sea water with pressure has the lower freezing point than pure water, the lower temperature cooling medium is required in the application of subsea tunnel. Also, the cooling medium must have refrigeration safety and is able to reduce executing time. Brine freezing system can reuse cooling medium and is safer than liquid nitrogen freezing. But it takes more time to freeze ground and needs complex circulation plants. On the other hand, liquid nitrogen freezing system can't recycle cooling medium and may cause breathing problems or asphyxiation through oxygen deficiency. But, freezing with liquid nitrogen is fast and requires simple refrigeration equipment. Principal elements of design for ground freezing in subsea tunnel have been extracted and these elements are needed further research.

The development of a back analysis program for subsea tunnel stability under operation: longitudinal direction (운영 중 해저 터널의 안정성 평가를 위한 역해석 프로그램 개발: 종단방향)

  • An, Joon-Sang;Kim, Byung-Chan;Moon, Hyun-Koo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.545-556
    • /
    • 2016
  • If a back analysis is used in various measurement information for the estimation of an operating subsea tunnel safety, it is possible to obtain the results within efficient error rate. With such a commercial geotechnical analysis program as FLAC3D, back analysis is performed with a DEA which was validated in previous studies. However, there is a problem that is relatively a time-consuming analysis. For this reason, beam-spring model-based FEM solver which takes shorter relative analysis time, was developed by Python language, and then combined with the built-DEA. In order to consider the assessment of safety of an operation tunnel near real-time, a program for longitudinal direction tunnel was developed due to its relative easy development for analysis solver engine.

A knowledge-based study on design of NATM lining for subsea tunnels (지식기반 개념을 이용한 해저터널의 NATM 터널의 라이닝 설계)

  • Sin, Chunwon;Woo, Seungjoo;Yoo, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.195-211
    • /
    • 2016
  • This paper concerns a study of a knowledge-based NATM tunnel lining design for subsea tunnels. Concept for tunnel automation designing system, the development of Artificial Neural Network based technology of the tunnel design system, the learning process and verification of the technology forecasting member forces were described. The design system is the series of process which can predict segmental lining member forces by ANN(artificial neural network system), analyze suitable section for the designated ground, construction and tunnel conditions using a FEM(finite element analysis). The lining member forces are predicted based on the ANN quickly and it helps designers determine its segmental lining dimension easily.

Development of optimized TBM segmental lining design system (TBM 세그먼트 라이닝 최적 설계 시스템 개발)

  • Woo, Seungjoo;Chung, Eunmok;Yoo, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.13-30
    • /
    • 2016
  • This paper concerns the development of an optimized TBM segmental lining design system for a subsea tunnel. The subsea tunnel is normally laid down under the sea water and submarine ground which consists of soil or rock. The design system is the series of process which can predict segmental lining member forces by ANN (artificial neural network system), analyze suitable section for the designated ground, construction and tunnel conditions. Finally, this lining design system aims to be connected with a BIM system for designing the subsea tunnel automatically. The lining member forces are predicted based on the ANN which was calculated by a FEM (finite element analysis) and it helps designers determine its segmental lining dimension easily without any further FE calculations.

The development of a back analysis program for subsea tunnel stability under operation: transversal tunnel section (운영 중 해저 터널의 안정성 평가를 위한 역해석 프로그램 개발: 횡단방향)

  • An, Joon-Sang;Kim, Byung-Chan;Lee, Sang-Hyun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.195-212
    • /
    • 2017
  • When back analysis is used for the assessment of an operating subsea tunnel safety in various measurement information such as stress, water pressure and tunnel lining and ground stiffness degradation, the reliable results within tolerable error rate can be obtained. By utilizing a commercial geotechnical analysis program FLAC3D, back analysis can be performed with a DEA which has already been successfully validated in previous studies. However, relative more time-consumption is the drawback of this approach. For this reason, this study introduced beam-spring model-based on FEM solver which uses less analysis time relatively. Beam-spring program capable of structural analysis of a circular tunnel section was developed by using Python language and combined with the built-DEA. From the measurement datum, expected to estimate the stability of an operation tunnel close to real-time.

New Horizontal Pre-Drainage System in Subsea Tunnelling (수평시추 방식에 의한 해저터널 시공중의 막장 수압경감)

  • Hong, Eun-Soo;Shin, Hee-Soon;Park, Chan;Kim, Hyung-Mok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • Most of flooding cases in tunnels are associated with huge inrushes of water due to the fracture zone with very high water head. To find out the causes and countermeasures for flooding cases, a dozen of tunneling cases are studied. Case studies presented here show that if the flooding had been forecasted and pre-drained prior to the tunnel excavation, such accidents could have been prevented. From this observation, we suggest a new horizontal drainage system with pre-investigation and pre-drainage concept. Seepage analyses are performed to analyze the water head reduction effect on the tunnel face by drainage pipes during the construction of subsea tunnels. Drainage system analyses are performed to analyze performance of the drainage system. These analysis results show that the suggested horizontal pre-drainage system provides a clear drainage and water head reducing effect. Finally, the proposed system can be a new alternative to the present water controlling methods applied to subsea tunnels.

Management of Risk Scenarios based on Ground Conditions under Construction of a Subsea Tunnel (해저터널 시공중 지반조건별 위험 시나리오 관리기법)

  • Park, Eui-Seob;Shin, Hee-Soon;Shin, Yong-Hoon;Kim, Taek-Gon
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.275-286
    • /
    • 2009
  • In order to establish the causes and measures for technical risks that occur in various ground conditions when a subsea tunnel is excavated, it is important to configure expected risk scenarios. In addition, when the risk scenarios are classified because the scenario that occurs along all tunnel route and the scenario limited to some area are considered together, a logical framework with systematic and organized responses can be provided for project managements. In this research, project risk scenarios and management elements were configurated, and the project schedule was established for the management techniques to the risk scenario. The risk scenarios expected in a subsea tunnel were classified into a common risk scenario and a special risk scenario, and the concept which can combine with the project management elements was derived.