• Title/Summary/Keyword: submarine groundwater discharge (SGD)

Search Result 12, Processing Time 0.025 seconds

Resistivity Exploration of Submarine Groundwater Discharge in Busan Area (부산지역의 해저용출수 전기비저항탐사)

  • Park, Jun-Kyu;Kim, Sung-Wook;Lee, Jin-Hyuk;Kim, In-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.711-716
    • /
    • 2010
  • This study selected the promising area of submarine groundwater discharge(SGD) that flows into the sea following unconfined physical aquifer through the electrical resistivity survey of the land and sea. The submarine groundwater discharge(SGD) mostly flows into the sea following fracture zones, and the detection of the fault zone becomes the important guideline of groundwater discharge. Electrical sounding of the land assessed the groundwater flow and integration possibility according to the location of a fault that is a water path between underground reservoir and surface water as well as a rock fracture. In addition, the study conducted sea electrical resistivity to expand the area with high potential and selected the expected water potential groundwater area. The areas of the study were Busan and coastal areas, and for the terrain analysis, the candidates of the ground exploration were selected after analyzing lineaments that is expanded to coast direction.

  • PDF

Temporal Variations of Submarine Groundwater Discharge (SGD) and SGD-driven Nutrient Inputs in the Coastal Ocean of Jeju Island (제주도 연안에서 해저 지하수 및 지하수 기원 영양염류 유입량의 시간적 변화)

  • Hwang, Dong-Woon;Koh, Byoung-Seol
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.252-261
    • /
    • 2012
  • To determine the temporal variations of submarine groundwater discharge (SGD) and SGD-driven nutrients inputs, we measured the seepage rate and the nutrient concentrations of pore water/groundwater in Bangdu Bay of Jeju Island at two and three month intervals from September 2009 to September 2010. The seepage rate of groundwater ranged from 0 to 330 cm/day (average ~170 cm/day) during the five sampling periods, which increased sharply from high tide to low tide due to changes in hydraulic pressure gradient between water table in land and water sea level in the coastal ocean by the tidal cycles. The submarine inputs of groundwater were also relatively higher in summer than in winter. The nutrient fluxes from SGD were about 90~100%, 70~95%, and 65~100% of the total input (except from open ocean waters) for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively, potentially supporting about 0.9~33 g $carbon/m^2/day$ of new primary production in Baugdu Bay. Thus, our study suggests that SGD-driven nutrients may play an important role in the eutrophication and biological production in the coastal ocean of Jeju Island.

Submarine Discharge and Geochemical Characteristics of Groundwater in the Southeastern Coastal Aquifer off Busan, Korea (부산 남동지역 연안 대수층내 지하수의 지화학적 특성과 유출)

  • Yang, Han-Soeb;Hwang, Dong-Woon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.3
    • /
    • pp.167-177
    • /
    • 2007
  • We measured the salinity, pH, and concentrations of $^{222}Rn$ and nutrients in groundwater in the southeastern coastal aquifer off Busan from March to September 2005 to evaluate its submarine discharge and geochemical characteristics. Salinity in coastal groundwater increased sharply at 20 m depth and exceeded 25 ppt below 40 m during the study period, indicating that a strong transition zone between fresh groundwater and seawater developed between 20 and 40 m depths. Fresh groundwater in the upper layer of this transition zone was characterized by high pH, $^{222}Rn$, dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP) and low dissolved inorganic silicate (DSi) relative to seawater in the lower layer. In addition, the vertical profiles of the $^{222}Rn$, DIN, and DIP concentrations imply that a strong advective groundwater flow occurs along the interface of fresh groundwater and seawater near 20 m depth. The geochemical constituents in coastal groundwater also showed strong seasonal variation, with the highest concentrations in summer (June 2005) due to the changes of groundwater recharge and sea level. This implies that the input of terrestrial chemical species into the coastal ocean through submarine groundwater discharge (SGD) could change seasonally. To ascertain the seasonal variation of SGD and SGD-driven chemical species fluxes, and associated ecological responses in the coastal ocean, more extensive studies are necessary using various SGD tracers or seepage meters in the future.

Exploration and Verification of Submarine Groundwater Discharge on Jeju Island by Remotely Sensed Based Water Quality Analysis (시계열 수질 분석에 의한 제주도의 해저용출수 탐사 및 검증)

  • Baek Seung-Gyun;Park Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.395-409
    • /
    • 2005
  • To explore submarine groundwater discharge (SGD) into the coastal zone of Jeju Island, the water quality analysis with seasonal remotely sensed data was carried out. If the groundwater is directly discharged into the ocean, the water quality of coastal zone is influenced. Therefore sea surface temperature (SST), the transparency, and Chlorophyll-a's concentration were analyzed for extracting the anomaly zone related with SGD using Landsat Thematic Mapper (TM) data acquired on April, August, and December. Then the spatial characteristics of springs, which located along the coastal area, were analyzed by CIS data integration based on Fuzzy logic. The integration results were compared with the anomaly zone extracted from Landsat TM data, and it is considered that springs has close relationship with SGD.

Submarine Discharge of Fresh Groundwater Through the Coastal Area of Korea Peninsula: Importance as a Future Water Resource (한반도 주변 연안 해저를 통한 담지하수의 유출: 미래 수자원으로서의 중요성)

  • Hwang, Dong-Woon;Kim, Gue-Buem;Lee, Jae-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.4
    • /
    • pp.192-202
    • /
    • 2010
  • Submarine groundwater discharge (SGD) has been recognized as a provider for freshwater, nutrients, and dissolved constituents from continents to the oceans and paid more attention with regard to the mass balance of water or dissolved constituents on local and global scales. The submarine discharge of fresh groundwater (fresh SGD) through seepage or springs in coastal ocean may be especially important in aspects of water resource and marine environment managements in the future. Based on the worldwide compilations of observed fresh SGD, our review reveals that fresh SGD occurs in various marine environments along most shoreline of the world and the global estimates of fresh SGD were approximately 0.01-17% of surface runoff. In addition, the input of fresh SGD calculated and investigated in this study were about 50%, 57%, 89%, and 420% of total river discharge in Jeju Island, Yeongil Bay, Masan Bay, and Yeoja Bay, respectively. These inputs from fresh SGD along the shoreline of Korea Peninsula are much higher than those of the whole world, greatly vary with the region. However, since these estimates are based on the water balance method mainly used in coastal ocean, we have to perform continuous monitoring of various parameters, such as precipitation, tide, evapotanspiration and water residence time, which have an impact on the water balance in a lot of areas for evaluating the precise input of fresh SGD. In addition, since the method estimating the input of fresh SGD has brought up many problems, it is required to make an intercomparison between various methods such as hydrogeological assumption, numerical modeling, and seepage meter.

The Characteristics of Submarine Groundwater Discharge in the Coastal Area of Nakdong River Basin (낙동강 유역의 연안 해저지하수 유출특성에 관한 연구)

  • Kim, Daesun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1589-1597
    • /
    • 2021
  • Submarine groundwater discharge (SGD) in coastal areas is gaining importance as a major transport route that bring nutrients and trace metals into the ocean. This paper describes the analysis of the seasonal changes and spatiotemporal characteristicsthrough the modeling monthly SGD for 35 years from 1986 to 2020 for the Nakdong river basin. In this study, we extracted 210 watersheds and SGD estimation points using the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). The average annual SGD of the Nakdong River basin was estimated to be 466.7 m2/yr from the FLDAS (Famine Early Warning Systems Network Land Data Assimilation System) recharge data of 10 km which is the highest resolution global model applicable to Korea. There was no significant time-series variation of SGD in the Nakdong river basin, but the concentrated period of SGD was expanded from summer to autumn. In addition, it was confirmed that there is a large amount of SGD regardless of the season in coastal area nearby large rivers, and the trend has slightly increased since the 1980s. The characteristics are considered to be related to the change in the major precipitation period in the study area, and spatially it is due to the high baseflow-groundwater in the vicinity of large rivers. This study is a precedentstudy that presents a modeling technique to explore the characteristics of SGD in Korea, and is expected to be useful as foundational information for coastal management and evaluating the impact of SGD to the ocean.

A Study on Estimation of Submarine Groundwater Discharge Distribution area using IR camera and Field survey around Jeju island (열화상카메라와 현장조사를 이용한 제주 주변 해역의 해저 용천수 분포 지역 추정 연구)

  • Park, Jae-Moon;Kim, Dae-Hyun;Yang, Sung-Kee;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.861-866
    • /
    • 2015
  • This study was aimed to detect area of Submaine Groundwater Discharged(: SGD) around Jeju island using by remote sensing. Sea Surface Temperature(SST) was identified using IR camera on Unmaned Aerial Vehicle(UAV) at Gimnyeong port in study area. Then SGD location was detected by comparing range of SGD temperature. Generally, range of SGD temperature is distributed 15 to 17 like underground water. The result, SGD location was detected by SST distribution of Gimnyeong port recorded by IR camera in the southwest of study area.

Environmental and Ecological Consequences of Submarine Groundwater Discharge in the Coastal Areas of the Korea Peninsula (한반도 연안 해역에서 해저 지하수 유출의 환경 생태학적 중요성)

  • KIM GUEBUEM;HWANG DONG-WOON;RYU JAE-WOONG;LEE YONG-WOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.4
    • /
    • pp.204-212
    • /
    • 2005
  • Recognition has emerged that nutrient inputs from the submarine discharge of fresh, brackish, and marine groundwaters into the coastal ocean are comparable to the inputs via river discharge. The coastal areas of the Korea peninsula and adjacent seas exhibit particular importance in the role of submarine groundwater discharge (SGD), in terms of the magnitude of SGD and associated continental material fluxes. For example, in the southern sea of Korea, SGD transports excess nutrients into the coastal regions and thus appears to influence ecosystem changes such as the outbreak of red tides. Around volcanic island, Jeju, which is composed of high permeability rocks, the amount of SGD is higher by orders of magnitude relative to the eastern coast of North America where extensive SGD studies have been conducted. In particular, nutrient discharge through SGD exerts a significant control on coastal ecosystem changes and results in benthic eutrophication in semi-enclosed Bang-du bay, Jeju. In the entire area of the Yellow Sea, tile submarine discharge of brackish groundwater and associated nutrients are found to rival the river discharges into the Yellow Sea, including those through Yangtze River, Han River, etc. In the eastern coast of the Korea peninsula, SGD is significantly higher during summer than winter due to high hydraulic gradients and due to wide distribution of high permeability sandy zones, faults, and fractures. On the other hand, in the estuarine water, downstream construction of the dam in the Nakdong River, SGD was highest when the river discharge was lowest (but water level of the dam was highest). This suggests that even though there is no visible freshwater discharge into this estuary, the discharge of chemical species is significant through SGD. On the basis of the results obtained from the coastal areas of the Korea peninsula, SGD is considered to be an important pathway of continental contaminants influencing tidal-flat ecosystems, red tides, and coral ecology. Thus, future costal management should pay great attention to the impact of SGD on coastal pollution and eutrophication.

A Study on Estimation of Submarine Groundwater Discharge Distribution Area using Landsat-7 ETM+ images around Jeju island (Landsat-7 ETM+ 영상을 이용한 제주 주변 해역의 해저 용출수 분포 지역 추정 연구)

  • Park, Jae-Moon;Kim, Dae-Hyun;Yang, Sung-Kee;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.7
    • /
    • pp.811-818
    • /
    • 2014
  • This study was aimed to detect Submarine Groundwater Discharge (SGD) distribution image of Sea Surface Temperature (SST) using infrared band of Landsat-7 ETM+ around Jeju island. It is used to analyze SST distribution that DN value of satellite images converted into temperature. The estimation of SGD location is that extracting range of $15{\sim}17^{\circ}C$ from SST. The summer season images(July 28. 2006, Aug. 29. 2006 and Sep. 19. 2008) were used to analyze big difference between SST and temperature of SGD. The results, estimated SGD locations were occurred part of coastal area in northeastern of Jeju island.

Transient Groundwater Flow Modeling in Coastal Aquifer

  • Li Eun-Hee;Hyun Yun-Jung;Lee Kang-Kun;Park Byoung-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.293-297
    • /
    • 2006
  • Submarine groundwater discharge (SGD) and the interface between seawater and freshwater in an unconfined coastal aquifer was evaluated by numerical modeling. A two-dimensional vertical cross section of the aquifer was constructed. Coupled flow and salinity transport modeling were peformed by using a numerical code FEFLOW In this study, we investigated the changes in groundwater flow and salinity transport in coastal aquifer with hydraulic condition such as the magnitude of recharge flux, hydraulic conductivity. Especially, transient simulation considering tidal effect and seasonal change of recharge rate was simulated to compare the difference between quasi-steady state and transient state. Results show that SGD flux is in proportion to the recharge rate and hydraulic conductivity, and the interface between the seawater and the freshwater shows somewhat retreat toward the seaside as recharge flux increases. Considered tidal effect, SGD flux and flow directions are affected by continuous change of the sea level and the interface shows more dispersed pattern affected by velocity variation. The cases which represent variable daily recharge rate instead of annual average value also shows remarkably different result from the quasi-steady case, implying the importance of transient state simulation.

  • PDF