DOI QR코드

DOI QR Code

Temporal Variations of Submarine Groundwater Discharge (SGD) and SGD-driven Nutrient Inputs in the Coastal Ocean of Jeju Island

제주도 연안에서 해저 지하수 및 지하수 기원 영양염류 유입량의 시간적 변화

  • 황동운 (국립수산과학원 어장환경과) ;
  • 고병설 (해양환경관리공단 해양생태팀)
  • Received : 2012.11.05
  • Accepted : 2012.11.19
  • Published : 2012.11.30

Abstract

To determine the temporal variations of submarine groundwater discharge (SGD) and SGD-driven nutrients inputs, we measured the seepage rate and the nutrient concentrations of pore water/groundwater in Bangdu Bay of Jeju Island at two and three month intervals from September 2009 to September 2010. The seepage rate of groundwater ranged from 0 to 330 cm/day (average ~170 cm/day) during the five sampling periods, which increased sharply from high tide to low tide due to changes in hydraulic pressure gradient between water table in land and water sea level in the coastal ocean by the tidal cycles. The submarine inputs of groundwater were also relatively higher in summer than in winter. The nutrient fluxes from SGD were about 90~100%, 70~95%, and 65~100% of the total input (except from open ocean waters) for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively, potentially supporting about 0.9~33 g $carbon/m^2/day$ of new primary production in Baugdu Bay. Thus, our study suggests that SGD-driven nutrients may play an important role in the eutrophication and biological production in the coastal ocean of Jeju Island.

해저지하수와 지하수 기원 영양염류 유입량의 시간적 변화특성을 알아보기 위해 2009년 9월부터 2010년 9월까지 2-3개월 간격으로 제주도의 방두만에서 지하수의 유출속도와 영양염류 농도를 측정하였다. 해저지하수의 유출속도는 0~330 cm/day(평균 약 170 cm/day)였으며 조석주기 동안 육상 지하수면과 해수면사이의 수리학적 압력경사의 변화로 인해 고조에서 저조로 갈수록 빨라지는 경향을 보였다. 또한, 해저지하수의 유입량은 겨울철에 비해 여름철에 상대적으로 높았다. 지하수 기원 영양염류 유입량은 방두만내 전체 영양염류 유입양의 용존무기질소는 90~100%, 용존무기인은 70~95%, 용존무기규소는 65~100% 이었으며, 이는 0.9~33 g $carbon/m^2/day$의 유기탄소 생성에 기여를 하는 것으로 나타났다. 따라서, 해저지하수를 통한 영양염류의 유입은 제주도 연안의 부영양화 및 생물생산에 매우 중요한 역할을 담당하는 것으로 보인다.

Keywords

References

  1. Burnett, W.C., P.K. Aggarwal, A. Aureli, H. Bokuniewicz, J.E. Cable, M.A. Charette, E. Kontar, S. Krupa, K.M. Kulkarni, A. Loveless, W.S. Moore, J.A. Oberdorfer, J. Oliveira, N. Ozyurt, P. Povinec, A.M.G. Privitera, R. Rajar, R.T. Ramessur, J. Scholten, T. Stieglitz, M. Taniguchi and J.V. Turner, 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ., 367: 498-543. https://doi.org/10.1016/j.scitotenv.2006.05.009
  2. Burnett, W.C., G. Wattayakorn, M. Taniguchi, H. Dulaiova, P. Sojisuporn, S. Rungsupa and T. Ishitobi, 2007. Groundwaterderived nutrient inputs to the upper Gulf of Thailand. Cont. Shelf Res., 27: 176-190. https://doi.org/10.1016/j.csr.2006.09.006
  3. Cable, J.E., W.C. Burnett and J.P. Chanton, 1997. Magnitude and variations of groundwater seepage along a Florida marine shoreline. Biogeochemistry, 38: 189-205. https://doi.org/10.1023/A:1005756528516
  4. Capone, D.G. and J.M. Slater, 1990. Interannual patterns of water table height and groundwater derived nitrate in nearshore sediments. Biogeochemistry, 10: 277-288. https://doi.org/10.1007/BF00003148
  5. Chanton, J.P., W.C. Burnett, H. Dulaiova, D.R. Corbett and M. Taniguchi, 2003. Seepage rate variability in Florida Bay driven by Atlantic tidal height. Biogeochemistry, 66: 187-202. https://doi.org/10.1023/B:BIOG.0000006168.17717.91
  6. Church, T.M., 1996. An underground route for the water cycle. Nature, 380: 579-580. https://doi.org/10.1038/380579a0
  7. Conley, D.J., 2000. Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia, 410: 87-96.
  8. Dulaiova, H., W.C. Burnett, J.P. Chanton, W.S. Moore, H.J. Bokuniewicz, M.A. Charette and E. Sholkovitz, 2006. Assessment of groundwater discharge into West Neck Bay, New York, via natural tracers. Cont. Shelf Res., 26: 1971-1983. https://doi.org/10.1016/j.csr.2006.07.011
  9. Garrison, G.H., C.R. Glenn and G.M. McMurtry, 2003. Measurement of submarine groundwater discharge in Kahana Bay, O'ahu, Hawaii. Limnol. Oceanogr., 48: 920-928. https://doi.org/10.4319/lo.2003.48.2.0920
  10. Giblin, A.E. and A.G. Gaines, 1990. Nitrogen inputs to a marine embayment: The importance of groundwater. Biogeochemistry, 10: 309-328. https://doi.org/10.1007/BF00003150
  11. Hwang, D.W., G. Kim and J.Y. Lee, 2010a. Submarine discharge of fresh groundwater through the coastal area of Korea peninsula: Importance as a future water resource. The Sea - J. Kor. Soc. Oceanogr., 15: 192-202.
  12. Hwang, D.W., G. Kim, W.C. Lee and H.T. Oh, 2010b. The role of submarine groundwater discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish farming bay, in Korea. J. Sea Res., 64: 224-230. https://doi.org/10.1016/j.seares.2010.02.006
  13. Hwang, D.W., G. Kim, Y.W. Lee and H.S. Yang, 2005a. Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Mar. Chem., 96: 61-71. https://doi.org/10.1016/j.marchem.2004.11.002
  14. Hwang, D.W., Y.W. Lee and G. Kim, 2005b. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnol. Oceanogr., 50: 1393-1403. https://doi.org/10.4319/lo.2005.50.5.1393
  15. Jung, H.Y. and K.J. Cho, 2003. SOD and inorganic nutrient fluxes from sediment in downstream of the Nakdong River. Korean J. Limnol., 36: 322-335.
  16. Kang, D.H., S.I. Yang, T.Y. Kim, H.J. Park and B.H. Kwon, 2008. The variation characteristics of groundwater level with distance from shoreline in the Jeju Island. J. Engineer. Geol., 18: 157-166.
  17. Kelly, R.P. and S.B. Moran, 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol. Oceangr., 47: 1796-1807. https://doi.org/10.4319/lo.2002.47.6.1796
  18. Kim, D.H. and C.K. Park, 1998. Estimation of nutrients released from sediments of Deukryang Bay. J. Korean Environ. Sci. Soc., 7: 425-431.
  19. Kim, G. and D.W. Hwang, 2002. Tidal pumping of groundwater into the coastal ocean revealed from submarine $^{222}Rn$ and $CH_{4}$ monitoring. Geophys. Res. Lett., 29: doi:10.1029/2002GL015093.
  20. Kim, G., D.W. Hwang, J.W. Ryu and Y.W. Lee, 2005. Environmental and ecological consequences of submarine groundwater discharge in the coastal areas of the Korea Peninsula. The-Sea J. Kor. Soc. Oceanogr., 10: 204-212.
  21. Kim, G., J.S. Kim and D.W. Hwang, 2011. Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: Implications for global biological production and organic carbon fluxes. Limnol. Oceanogr., 56: 673-682. https://doi.org/10.4319/lo.2011.56.2.0673
  22. Kim, G., K.K. Lee, K.S. Park, D.W. Hwang and H.S. Yang, 2003. Large submarine groundwater discharge (SGD) from a volcanic island. Geophy. Res. Lett., 30: doi:10.1029/2003GL018378.
  23. Kim, J., J.S. Kim and G. Kim, 2010. Nutrient input from submarine groundwater discharge versus intermittent river-water discharge through an artificial dam in the Yeongsan River estuary, Korea. Ocean. Sci. J., 45: 179-186. https://doi.org/10.1007/s12601-010-0016-1
  24. Koh, D.C., L. Niel Plummer, E. Busenberg and Y.J. Kim, 2007. Evidence for terrigenic SF6 in groundwater from basaltic aquifers, Jeju Island, Korea: Implications for groundwater dating. J. hydrol., 339: 93-104. https://doi.org/10.1016/j.jhydrol.2007.03.011
  25. Krest J.M., W.S. Moore, L.R. Gardner and J.T. Morris, 2000. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Global Biogeochem. Cycles, 14: 167-176. https://doi.org/10.1029/1999GB001197
  26. Lapointe, B.E., J.D. O'Connel and G.S. Garrett, 1990. Nutrient couplings between on-site sewage disposal systems, groundwaters, and nearshore surface waters of the Florida Keys. Biogeochemistry, 10: 289-307. https://doi.org/10.1007/BF00003149
  27. Lee, D.R., 1977. A device for measuring seepage flux in lakes and estuaries. Limnol. Oceanogr., 22: 140-147. https://doi.org/10.4319/lo.1977.22.1.0140
  28. Lee, J.B., J.H. Choa, Y.B. Go and Y.C. Choi, 1993. Bioecological studies of the eastern coastal area in Cheju Island (II). Phytoplankton dynamics and primary productivity around U-do. J. Korean Earth Sci. Soc., 14: 458-466.
  29. Lee, Y.W., D.W. Hwang, G. Kim, W.C. Lee and H.T. Oh, 2009. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Sci. Total Environ., 407: 3181-3188. https://doi.org/10.1016/j.scitotenv.2008.04.013
  30. Lee, Y.W. and G. Kim, 2007. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuar. Coast. Shelf Sci., 71: 309-317. https://doi.org/10.1016/j.ecss.2006.08.004
  31. Lee, Y.W, G. Kim, W.A. Lim and D.W. Hwang, 2010. A relationship between submarine groundwater-borne nutriens traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnol. Oceanogr., 55: 1-10. https://doi.org/10.4319/lo.2010.55.1.0001
  32. Lewis, J.B., 1987. Measurements of groundwater seepage flux onto a coral reef: Spatial and temporal variations. Limnol. Oceanogr., 32: 1165-1169. https://doi.org/10.4319/lo.1987.32.5.1165
  33. Milliman, J.D., 1993. Production and accumulation of calcium carbonate in the ocean: Budget of a non-steady state. Global Biogeochem. Cycles, 7: 927-957. https://doi.org/10.1029/93GB02524
  34. Moore, W.S., 1996. Large groundwater inputs to coastal waters revealed by $^{226}Ra$ enrichment. Nature, 380: 612-614. https://doi.org/10.1038/380612a0
  35. Moore, W.S., J.L. Sarmiento and R.M. Key, 2008. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nature Geosci. 1: 309-311. https://doi.org/10.1038/ngeo183
  36. Mulligan, A.E. and M.A. Charette, 2006. Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer. J. Hydrol., 327: 411-425. https://doi.org/10.1016/j.jhydrol.2005.11.056
  37. Oberdorfer, J.A., 2003. Hydrogeologic modeling of submarine groundwater discharge: Comparison to other quantitative methods. Biogeochemistry, 66: 159-169. https://doi.org/10.1023/B:BIOG.0000006096.94630.54
  38. Park, W.B., G.P. Kim, J.H. Lee, D.C. Moon, S.J. Kim, G.W. Koh, S.J. Pang and I.C. Pang, 2011. Variation of groundwater level and recharge volume in Jeju Island. J. Environ Sci., 20: 857-872. https://doi.org/10.5322/JES.2011.20.7.857
  39. Park, W.B., S.K. Yang and G.W. Koh, 1994. Study on the fluctuations of groundwater levels in Cheju Island, Korea. J. Kor. Environ. Sci. Soc., 3: 333-348.
  40. Povinec, P.P., W.C. Burnett, A. Beck, H. Bokuniewicz, M. Charette, M.E. Gonneea, M. Groening, T. Ishitobi, E. Kontar, L.L.W. Kwong, D.E.P. Marie, W.S. Moore, J.A. Oberdorfer, R. Peterson, R. Ramessur, J. Rapaglia, T. Stieglitz and Z. Top, 2012. Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island. J. Environ. Radiact., 104: 24-45. https://doi.org/10.1016/j.jenvrad.2011.09.009
  41. Scott, M.K. and S.B. Moran, 2001. Ground water input to coastal salt ponds of southern Rhode Island estimated using $^{226}Ra$ as a tracer. J. Environ. Radiat., 54: 163-174. https://doi.org/10.1016/S0265-931X(00)00172-7
  42. Sholkovitz, E., C. Herbold and M.A. Charette, 2003. An automated dye-dilution based seepage meter for the time-series measurement of submarine groundwater discharge. Limnol. Oceanogr. Methods, 1: 16-28. https://doi.org/10.4319/lom.2003.1.16
  43. Swarzenski, P.W., W.H. Orem, B.F. McPherson, M. Baskaran and Y. Wan, 2006. Biogeochemical transport in the Loxahatchee River estuary, Florida: The role of submarine groundwater discharge. Mar. Chem., 101: 248-265. https://doi.org/10.1016/j.marchem.2006.03.007
  44. Taniguchi, M., 2002. Tidal effects on submarine groundwater discharge into the ocean. Geophys. Res. Lett., 29: doi:10.1029/2002GL014987.
  45. Taniguchi, M., W.C. Burnett, J.E. Cable and J.V. Turner, 2002. Investigation of submarine groundwater discharge. Hydrol. Process., 16: 2115-2129. https://doi.org/10.1002/hyp.1145
  46. Taniguchi, M., W.C. Burnett, H. Dulaiova, E.A. Kontar, P.P. Povinec and W.S. Moore, 2006. Submarine groundwater discharge measured by seepage meters in Sicilian coastal waters. Cont. Shelf Res., 26: 835-842. https://doi.org/10.1016/j.csr.2005.12.002
  47. Waska, H. and G. Kim, 2010. Differences in microphytobenthos and macrofaunal abundances associated with groundwater discharge in the intertidal zone. Mar. Ecol. Prog. Ser., 407: 159-172. https://doi.org/10.3354/meps08568
  48. Waska, H. and G. Kim, 2011. Submarine groundwater discharge (SGD) as a main nutrient source for benthic and water-column primary production in a large intertidal environment of the Yellow Sea. J. Sea Res., 65: 103-113. https://doi.org/10.1016/j.seares.2010.08.001
  49. Yang, H.S., D.W. Hwang and G. Kim, 2002. Factors controlling excess radium in the Nakdong River estuary, Korea: Submarine groundwater discharge versus desorption from riverine particles. Mar. Chem., 78: 1-8. https://doi.org/10.1016/S0304-4203(02)00004-X
  50. Zektzer, I.S., V.A. Ivanov and A.V. Meskheteli, 1973. The problem of direct groundwater discharge to the seas. J. Hydrol., 20: 1-36. https://doi.org/10.1016/0022-1694(73)90042-5

Cited by

  1. An alternative approach to conventional seepage meters: Buoy-type seepage meter vol.16, pp.5, 2018, https://doi.org/10.1002/lom3.10246
  2. Quantitative estimation of submarine groundwater discharge using airborne thermal infrared data acquired at two different tidal heights pp.08856087, 2019, https://doi.org/10.1002/hyp.13387