Browse > Article
http://dx.doi.org/10.7850/jkso.2012.17.4.252

Temporal Variations of Submarine Groundwater Discharge (SGD) and SGD-driven Nutrient Inputs in the Coastal Ocean of Jeju Island  

Hwang, Dong-Woon (Marine Environment Research Division, NFRDI)
Koh, Byoung-Seol (Marine Ecosystem Management Team, KOEM)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.17, no.4, 2012 , pp. 252-261 More about this Journal
Abstract
To determine the temporal variations of submarine groundwater discharge (SGD) and SGD-driven nutrients inputs, we measured the seepage rate and the nutrient concentrations of pore water/groundwater in Bangdu Bay of Jeju Island at two and three month intervals from September 2009 to September 2010. The seepage rate of groundwater ranged from 0 to 330 cm/day (average ~170 cm/day) during the five sampling periods, which increased sharply from high tide to low tide due to changes in hydraulic pressure gradient between water table in land and water sea level in the coastal ocean by the tidal cycles. The submarine inputs of groundwater were also relatively higher in summer than in winter. The nutrient fluxes from SGD were about 90~100%, 70~95%, and 65~100% of the total input (except from open ocean waters) for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively, potentially supporting about 0.9~33 g $carbon/m^2/day$ of new primary production in Baugdu Bay. Thus, our study suggests that SGD-driven nutrients may play an important role in the eutrophication and biological production in the coastal ocean of Jeju Island.
Keywords
Submarine groundwater discharge; nutrient; seepage rate; Jeju Island;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lee, Y.W, G. Kim, W.A. Lim and D.W. Hwang, 2010. A relationship between submarine groundwater-borne nutriens traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnol. Oceanogr., 55: 1-10.   DOI
2 Lewis, J.B., 1987. Measurements of groundwater seepage flux onto a coral reef: Spatial and temporal variations. Limnol. Oceanogr., 32: 1165-1169.   DOI
3 Milliman, J.D., 1993. Production and accumulation of calcium carbonate in the ocean: Budget of a non-steady state. Global Biogeochem. Cycles, 7: 927-957.   DOI
4 Moore, W.S., 1996. Large groundwater inputs to coastal waters revealed by $^{226}Ra$ enrichment. Nature, 380: 612-614.   DOI
5 Moore, W.S., J.L. Sarmiento and R.M. Key, 2008. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nature Geosci. 1: 309-311.   DOI
6 Mulligan, A.E. and M.A. Charette, 2006. Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer. J. Hydrol., 327: 411-425.   DOI   ScienceOn
7 Oberdorfer, J.A., 2003. Hydrogeologic modeling of submarine groundwater discharge: Comparison to other quantitative methods. Biogeochemistry, 66: 159-169.   DOI   ScienceOn
8 Park, W.B., G.P. Kim, J.H. Lee, D.C. Moon, S.J. Kim, G.W. Koh, S.J. Pang and I.C. Pang, 2011. Variation of groundwater level and recharge volume in Jeju Island. J. Environ Sci., 20: 857-872.   과학기술학회마을   DOI   ScienceOn
9 Park, W.B., S.K. Yang and G.W. Koh, 1994. Study on the fluctuations of groundwater levels in Cheju Island, Korea. J. Kor. Environ. Sci. Soc., 3: 333-348.   과학기술학회마을
10 Povinec, P.P., W.C. Burnett, A. Beck, H. Bokuniewicz, M. Charette, M.E. Gonneea, M. Groening, T. Ishitobi, E. Kontar, L.L.W. Kwong, D.E.P. Marie, W.S. Moore, J.A. Oberdorfer, R. Peterson, R. Ramessur, J. Rapaglia, T. Stieglitz and Z. Top, 2012. Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island. J. Environ. Radiact., 104: 24-45.   DOI   ScienceOn
11 Scott, M.K. and S.B. Moran, 2001. Ground water input to coastal salt ponds of southern Rhode Island estimated using $^{226}Ra$ as a tracer. J. Environ. Radiat., 54: 163-174.   DOI   ScienceOn
12 Sholkovitz, E., C. Herbold and M.A. Charette, 2003. An automated dye-dilution based seepage meter for the time-series measurement of submarine groundwater discharge. Limnol. Oceanogr. Methods, 1: 16-28.   DOI
13 Swarzenski, P.W., W.H. Orem, B.F. McPherson, M. Baskaran and Y. Wan, 2006. Biogeochemical transport in the Loxahatchee River estuary, Florida: The role of submarine groundwater discharge. Mar. Chem., 101: 248-265.   DOI   ScienceOn
14 Taniguchi, M., 2002. Tidal effects on submarine groundwater discharge into the ocean. Geophys. Res. Lett., 29: doi:10.1029/2002GL014987.   DOI   ScienceOn
15 Taniguchi, M., W.C. Burnett, J.E. Cable and J.V. Turner, 2002. Investigation of submarine groundwater discharge. Hydrol. Process., 16: 2115-2129.   DOI   ScienceOn
16 Taniguchi, M., W.C. Burnett, H. Dulaiova, E.A. Kontar, P.P. Povinec and W.S. Moore, 2006. Submarine groundwater discharge measured by seepage meters in Sicilian coastal waters. Cont. Shelf Res., 26: 835-842.   DOI   ScienceOn
17 Waska, H. and G. Kim, 2010. Differences in microphytobenthos and macrofaunal abundances associated with groundwater discharge in the intertidal zone. Mar. Ecol. Prog. Ser., 407: 159-172.   DOI
18 Zektzer, I.S., V.A. Ivanov and A.V. Meskheteli, 1973. The problem of direct groundwater discharge to the seas. J. Hydrol., 20: 1-36.   DOI   ScienceOn
19 Waska, H. and G. Kim, 2011. Submarine groundwater discharge (SGD) as a main nutrient source for benthic and water-column primary production in a large intertidal environment of the Yellow Sea. J. Sea Res., 65: 103-113.   DOI   ScienceOn
20 Yang, H.S., D.W. Hwang and G. Kim, 2002. Factors controlling excess radium in the Nakdong River estuary, Korea: Submarine groundwater discharge versus desorption from riverine particles. Mar. Chem., 78: 1-8.   DOI   ScienceOn
21 Church, T.M., 1996. An underground route for the water cycle. Nature, 380: 579-580.   DOI
22 Burnett, W.C., P.K. Aggarwal, A. Aureli, H. Bokuniewicz, J.E. Cable, M.A. Charette, E. Kontar, S. Krupa, K.M. Kulkarni, A. Loveless, W.S. Moore, J.A. Oberdorfer, J. Oliveira, N. Ozyurt, P. Povinec, A.M.G. Privitera, R. Rajar, R.T. Ramessur, J. Scholten, T. Stieglitz, M. Taniguchi and J.V. Turner, 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ., 367: 498-543.   DOI   ScienceOn
23 Burnett, W.C., G. Wattayakorn, M. Taniguchi, H. Dulaiova, P. Sojisuporn, S. Rungsupa and T. Ishitobi, 2007. Groundwaterderived nutrient inputs to the upper Gulf of Thailand. Cont. Shelf Res., 27: 176-190.   DOI   ScienceOn
24 Cable, J.E., W.C. Burnett and J.P. Chanton, 1997. Magnitude and variations of groundwater seepage along a Florida marine shoreline. Biogeochemistry, 38: 189-205.   DOI   ScienceOn
25 Capone, D.G. and J.M. Slater, 1990. Interannual patterns of water table height and groundwater derived nitrate in nearshore sediments. Biogeochemistry, 10: 277-288.   DOI
26 Chanton, J.P., W.C. Burnett, H. Dulaiova, D.R. Corbett and M. Taniguchi, 2003. Seepage rate variability in Florida Bay driven by Atlantic tidal height. Biogeochemistry, 66: 187-202.   DOI   ScienceOn
27 Conley, D.J., 2000. Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia, 410: 87-96.
28 Dulaiova, H., W.C. Burnett, J.P. Chanton, W.S. Moore, H.J. Bokuniewicz, M.A. Charette and E. Sholkovitz, 2006. Assessment of groundwater discharge into West Neck Bay, New York, via natural tracers. Cont. Shelf Res., 26: 1971-1983.   DOI   ScienceOn
29 Garrison, G.H., C.R. Glenn and G.M. McMurtry, 2003. Measurement of submarine groundwater discharge in Kahana Bay, O'ahu, Hawaii. Limnol. Oceanogr., 48: 920-928.   DOI
30 Giblin, A.E. and A.G. Gaines, 1990. Nitrogen inputs to a marine embayment: The importance of groundwater. Biogeochemistry, 10: 309-328.   DOI
31 Hwang, D.W., G. Kim and J.Y. Lee, 2010a. Submarine discharge of fresh groundwater through the coastal area of Korea peninsula: Importance as a future water resource. The Sea - J. Kor. Soc. Oceanogr., 15: 192-202.
32 Hwang, D.W., G. Kim, W.C. Lee and H.T. Oh, 2010b. The role of submarine groundwater discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish farming bay, in Korea. J. Sea Res., 64: 224-230.   DOI   ScienceOn
33 Hwang, D.W., G. Kim, Y.W. Lee and H.S. Yang, 2005a. Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Mar. Chem., 96: 61-71.   DOI   ScienceOn
34 Kelly, R.P. and S.B. Moran, 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol. Oceangr., 47: 1796-1807.   DOI
35 Hwang, D.W., Y.W. Lee and G. Kim, 2005b. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnol. Oceanogr., 50: 1393-1403.   DOI   ScienceOn
36 Jung, H.Y. and K.J. Cho, 2003. SOD and inorganic nutrient fluxes from sediment in downstream of the Nakdong River. Korean J. Limnol., 36: 322-335.
37 Kang, D.H., S.I. Yang, T.Y. Kim, H.J. Park and B.H. Kwon, 2008. The variation characteristics of groundwater level with distance from shoreline in the Jeju Island. J. Engineer. Geol., 18: 157-166.
38 Kim, D.H. and C.K. Park, 1998. Estimation of nutrients released from sediments of Deukryang Bay. J. Korean Environ. Sci. Soc., 7: 425-431.
39 Kim, G. and D.W. Hwang, 2002. Tidal pumping of groundwater into the coastal ocean revealed from submarine $^{222}Rn$ and $CH_{4}$ monitoring. Geophys. Res. Lett., 29: doi:10.1029/2002GL015093.   DOI
40 Kim, G., D.W. Hwang, J.W. Ryu and Y.W. Lee, 2005. Environmental and ecological consequences of submarine groundwater discharge in the coastal areas of the Korea Peninsula. The-Sea J. Kor. Soc. Oceanogr., 10: 204-212.   과학기술학회마을
41 Kim, G., J.S. Kim and D.W. Hwang, 2011. Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: Implications for global biological production and organic carbon fluxes. Limnol. Oceanogr., 56: 673-682.   DOI
42 Kim, G., K.K. Lee, K.S. Park, D.W. Hwang and H.S. Yang, 2003. Large submarine groundwater discharge (SGD) from a volcanic island. Geophy. Res. Lett., 30: doi:10.1029/2003GL018378.   DOI
43 Lapointe, B.E., J.D. O'Connel and G.S. Garrett, 1990. Nutrient couplings between on-site sewage disposal systems, groundwaters, and nearshore surface waters of the Florida Keys. Biogeochemistry, 10: 289-307.   DOI
44 Kim, J., J.S. Kim and G. Kim, 2010. Nutrient input from submarine groundwater discharge versus intermittent river-water discharge through an artificial dam in the Yeongsan River estuary, Korea. Ocean. Sci. J., 45: 179-186.   DOI
45 Koh, D.C., L. Niel Plummer, E. Busenberg and Y.J. Kim, 2007. Evidence for terrigenic SF6 in groundwater from basaltic aquifers, Jeju Island, Korea: Implications for groundwater dating. J. hydrol., 339: 93-104.   DOI   ScienceOn
46 Krest J.M., W.S. Moore, L.R. Gardner and J.T. Morris, 2000. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Global Biogeochem. Cycles, 14: 167-176.   DOI   ScienceOn
47 Lee, D.R., 1977. A device for measuring seepage flux in lakes and estuaries. Limnol. Oceanogr., 22: 140-147.   DOI
48 Lee, J.B., J.H. Choa, Y.B. Go and Y.C. Choi, 1993. Bioecological studies of the eastern coastal area in Cheju Island (II). Phytoplankton dynamics and primary productivity around U-do. J. Korean Earth Sci. Soc., 14: 458-466.
49 Lee, Y.W., D.W. Hwang, G. Kim, W.C. Lee and H.T. Oh, 2009. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Sci. Total Environ., 407: 3181-3188.   DOI   ScienceOn
50 Lee, Y.W. and G. Kim, 2007. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuar. Coast. Shelf Sci., 71: 309-317.   DOI   ScienceOn