Submarine Discharge of Fresh Groundwater Through the Coastal Area of Korea Peninsula: Importance as a Future Water Resource

한반도 주변 연안 해저를 통한 담지하수의 유출: 미래 수자원으로서의 중요성

  • Hwang, Dong-Woon (Tidal Flat Research Institute, National Fisheries Research and Development Institute) ;
  • Kim, Gue-Buem (School of Earth and Environmental Sciences/RIO, Seoul National University) ;
  • Lee, Jae-Young (Marine Environment Policy Division, The Ministry of Land, Transport and Maritime Affairs)
  • 황동운 (국립수산과학원 갯벌연구소) ;
  • 김규범 (서울대학교 지구환경과학부) ;
  • 이재영 (국토해양부 해양환경정책과)
  • Received : 2010.07.25
  • Accepted : 2010.11.10
  • Published : 2010.11.30

Abstract

Submarine groundwater discharge (SGD) has been recognized as a provider for freshwater, nutrients, and dissolved constituents from continents to the oceans and paid more attention with regard to the mass balance of water or dissolved constituents on local and global scales. The submarine discharge of fresh groundwater (fresh SGD) through seepage or springs in coastal ocean may be especially important in aspects of water resource and marine environment managements in the future. Based on the worldwide compilations of observed fresh SGD, our review reveals that fresh SGD occurs in various marine environments along most shoreline of the world and the global estimates of fresh SGD were approximately 0.01-17% of surface runoff. In addition, the input of fresh SGD calculated and investigated in this study were about 50%, 57%, 89%, and 420% of total river discharge in Jeju Island, Yeongil Bay, Masan Bay, and Yeoja Bay, respectively. These inputs from fresh SGD along the shoreline of Korea Peninsula are much higher than those of the whole world, greatly vary with the region. However, since these estimates are based on the water balance method mainly used in coastal ocean, we have to perform continuous monitoring of various parameters, such as precipitation, tide, evapotanspiration and water residence time, which have an impact on the water balance in a lot of areas for evaluating the precise input of fresh SGD. In addition, since the method estimating the input of fresh SGD has brought up many problems, it is required to make an intercomparison between various methods such as hydrogeological assumption, numerical modeling, and seepage meter.

해저지하수 유출은 최근 전 지구적인 혹은 지역적인 규모에서 육상의 담수, 영양염류 및 다른 용존 화학원소들을 해양으로 공급하는 중요한 역할을 담당하는 것으로 밝혀지고 있다. 특히, 해저를 통한 육상 담지하수의 해양으로의 유출은 해양환경학적 측면뿐만 아니라 미래 수자원 확보측면에서 매우 중요한 의미를 가진다. 일반적으로 해저를 통한 담지하수 유출은 전 세계 연안해역에서 일어나고 있으며, 그 양은 지역 또는 측정 방법에 따라 강물 유출량의 0.01-17% 범위인 것으로 보고되고 있다. 본 연구에서 조사 및 계산된 한반도 주변 해저 담지하수의 유출량은 제주도, 영일만, 마산만, 여자만 지역에서 주변 강물 유출량의 약 50%, 57%, 89%, 420%로 다른 나라의 연안 해역에 비해 상당히 양이 많고 지역적으로 큰 차이를 보였다. 하지만, 본 연구에서 이용한 담지하수 유출량 계산 방법은 연안해역에서의 기초적인 물수지 방법을 이용한 것으로, 보다 정확한 담지하수 유출량 평가를 위해서는 앞으로 연안해역에서 물수지에 영향을 미치는 여러가지 요인들(강수량, 조석, 증발, 물의 체류시간 등)의 시공간적 변화에 대한 지속적인 모니터링이 필요하다. 또한, 여전히 해저 담지하수 유출량을 평가하는데 있어서 방법적인 문제가 많이 제기되고 있는 만큼, 수리역학적인 방법 및 seepage meter를 이용한 실제측정 등을 통한 상호비교가 요구된다.

Keywords

Acknowledgement

Grant : 저서동물군집을 이용한 생태계 평가기법 연구

Supported by : 국립수산과학원

References

  1. 김형수, 김성주, 2001. 한반도 동해안 유출 지하수에 대한 연구. 지구물리학회지, 4: 71-84.
  2. 심병완, 2003. 부산 동남해안 지역의 수리동역학적 해수침투 특성 연구. 부경대학교 박사학위논문, 부산, 123pp.
  3. 한상국, 박미옥, 2003. 영산강 방류수중 유기화합물 분석. 대한환경공학회 2003 춘계학술대회 논문집, 한국과학기술원, pp. 1264-1268.
  4. Berner, E.K. and R.A. Berner, 1987. The global water cycle. Prentice-Hall: Englewood Cliffs, NJ, pp. 12-24.
  5. Burnett, W.C., M. Taniguchi and J. Oberdorfer, 2001. Measurement and significance of the direct discharge of groundwater into the coastal zone. J. Sea Res., 46: 109-116. https://doi.org/10.1016/S1385-1101(01)00075-2
  6. Burnett, W.C., H. Bokuniewicz, M. Huettel, W.S. Moore and M. Taniguchi, 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66: 3-33. https://doi.org/10.1023/B:BIOG.0000006066.21240.53
  7. Burnett, W.C., P.K. Aggarwal, A Aureli, H. Bokuniewicz, J.E. Cable, M.A. Charette, E. Kontar, S. Krupa, K.M. Kulkarni, A. Loveless, W.S. Moore, J.A. Oberdorfer, J. Oliveira, N. Ozyurt, P. Povinec, A.M.G. Privitera, R. Rajar, R.T. Rarnessur, J. Scholten, T. Stieglitz, M. Taniguchi and J.V. Turner, 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ., 367: 498-543. https://doi.org/10.1016/j.scitotenv.2006.05.009
  8. Cable, J.E., W.C. Burnett, J.P. Chanton, D.R. Corbett and P.H. Cable, 1997. Field evaluation of seepage meters in the coastal marine environment. Estuar. Coast. Shelf Sci., 45: 367-375. https://doi.org/10.1006/ecss.1996.0191
  9. Calvino, F. and A. Stefanon, 1969. The submarine springs of fresh water and the problems of their capture. Rapp. P-V Reun., Commis. Int. Explor. Sci. Mer Mediterr, Monaco, 19: 609-610.
  10. Cambareri, T.C. and E.M. Eichner, 1998. Watershed delineation and ground water discharge to a coastal embayment. Ground Water, 36: 626-634. https://doi.org/10.1111/j.1745-6584.1998.tb02837.x
  11. Capone, D.G. and J.M. Slater, 1990. Interannual patterns of water-table height and groundwater derived nitrate in nearshore sediments. Biogeochemistry, 10: 277-288. https://doi.org/10.1007/BF00003148
  12. Chandury, S. and N. Clauer, 1986. Fluctuations of isotopic composition of strontium in seawater during the Phanerozoic Eon. Chem. Geol., 59: 293-303. https://doi.org/10.1016/0168-9622(86)90078-3
  13. Choi, H.Y., 2001. Oceanographic condition of the coastal area between Narodo Is. and Sorido Is. in the Southern Sea of Korea and its relation to the disappearance of red-tide observed in summer 1998. The Sea - J. Kor. Soc. Oceanogr., 6: 49-62.
  14. Church, T.M., 1996. An underground route for the water cycle. Nature, 380: 579-580. https://doi.org/10.1038/380579a0
  15. Corbett, D.R., J.P. Chanton, W.C. Burnett, K. Dillon, C. Rutkowski and J. Fourqurean, 1999. Patterns of groundwater discharge into Florida Bay. Limnol. Oceanogr., 44: 1045-1055. https://doi.org/10.4319/lo.1999.44.4.1045
  16. COSOD II, 1987. Fluid circulation in the crust and the global geochemical budget. Report of the Second Conference on Scientific Ocean Drilling, Strasbourg, France, 6-8 July.
  17. Eckstein, Y., 1969. Hydrogelogy of a volcanic island Che ju Do, Korea. Bull. Int. Assoc. Sci. Hydrol., 14: 45-60. https://doi.org/10.1080/02626666909493753
  18. Garrels, R.M. and F.T. MacKenzie, 1971. Evolution of sedimentary rocks. Norton & Co., New York, 397 pp.
  19. Giblin, A.E. and A.G. Gaines, 1990. Nitrogen inputs to a marine embayment: the importance of groundwater. Biogeochemistry, 10: 309-328. https://doi.org/10.1007/BF00003150
  20. Hahn, J., Y. Lee, N. Kim, C. Hahn and S. Lee, 1997. The ground-water resources and sustainable yield of Cheju volcanic island, Korea. Environ. Geol., 33: 43-53. https://doi.org/10.1007/s002540050223
  21. Han, S.Y, H.S. Hong and N. Park, 2006. Distribution of coastal groundwater discharge from surficial aquifers of major river districts. J. Kor. Soc. Civil Engineer., 26: 1-6.
  22. Hanshaw, B.B. and W. Back, 1980. Chemical mass-wasting of the northern Yucatan Peninsula by groundwater dissolution, Geol., 8: 222-224. https://doi.org/10.1130/0091-7613(1980)8<222:CMOTNY>2.0.CO;2
  23. Hwang, D.W., 2005. Magnitudes and mechanisms of submarine groundwater discharge (SGD) in the South Sea of Korea. Doctor thesis, Pukyong National University, 186 pp.
  24. Hwang, D.W., Y.W. Lee and G. Kim, 2005a. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnol. Oceanogr., 50: 1393-1403. https://doi.org/10.4319/lo.2005.50.5.1393
  25. Hwang, D.W., G. Kim, Y.W. Lee and H.S. Yang, 2005b. Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Mar. Chem., 96: 61-71. https://doi.org/10.1016/j.marchem.2004.11.002
  26. Isbister, 1966. Geology and hydrology of northeastern Nassau County, Long Island, New York. U.S. Geol.Surv. Water-Supply Pap., 1825, 89 pp.
  27. Johannes, R.E., 1980.The ecological significance of the submarine discharge of groundwater. Mar. Ecol. Prog. Ser., 3: 365-373. https://doi.org/10.3354/meps003365
  28. Kay, A.E., L.S. Lau, E.D. Stroup, S.J. Doller, D.P. Fellows and R.H.F. Young, 1977. Hydrological and ecological inventories of the coastal waters of West Hawaii, Univ. Hawaii, Water Resources Research Center Technical Report, 105, 94 pp.
  29. Kelly, R.P. and S.B. Moran, 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol. Oceanogr., 47: 1796-1807. https://doi.org/10.4319/lo.2002.47.6.1796
  30. Kim, G., D.W. Hwang, J.W. Ryu and Y.W. Lee, 2005a. Environmental and ecological consequences of submarine groundwater. The Sea - J. Kor. Soc. Oceanogr., 10: 204-212.
  31. Kim, G., K.K. Lee, K.S. Park, D.W. Hwang and H.S. Yang, 2003. Large submarine groundwater discharge (SGD) from a volcanic island. Geophys. Res. Lett., 30: doi: 10.1029/2003GL018378.
  32. Kim, G, J.W. Ryu and D.W. Hwang, 2008. Radium tracing of submarine groundwater discharge (SGD) and associated nutrient fluxes in a highly-permeable bed coastal zone, Korea. Mar. Chem., 109: 307-317. https://doi.org/10.1016/j.marchem.2007.07.002
  33. Kim, G., J.W. Ryu, H.S. Yang and S.T. Yun, 2005b. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by $^{228}Ra$ and ^{226}Ra$ isotopes: Implications for global silicate fluxes. Earth Planet. Sci. Lett., 237: 156-166. https://doi.org/10.1016/j.epsl.2005.06.011
  34. Kohout, F.A., 1966. Submarine springs: a neglected phenomenon of coastal hydrology. J. Hydrol., 26: 391-413.
  35. KORDI, 2003. Land-ocean interactions in the coastal zone. BSPE827-01-1493-4, 505 pp.
  36. Kwon, K.Y., C.H. Moon, J.S. Lee, S.R. Yang, M.O. Park and P.Y. Lee, 2004. Estuarine behavior and flux of Nutrients in the Seomjin River Estuary. The Sea - J. Kor. Soc. Oceanogr., 9: 153-163.
  37. Lambert, M.J. and W.C. Burnett, 2003. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements. Biogeochemistry, 66: 55-73. https://doi.org/10.1023/B:BIOG.0000006057.63478.fa
  38. Lee, Y.W., D.W. Hwang, G. Kim, W.C.. Lee and H.T. Oh, 2009. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Sci. Total Environ., 407: 3181-3188. https://doi.org/10.1016/j.scitotenv.2008.04.013
  39. Lvovich, M.L., 1974. World water resources and their future. Mysl. Publisher: Moscow, 448 pp.
  40. McGuinness, C.L., 1963. The role of groundwater in the national water situation. U.S. Geol. Surv. Water-Supply Pap., 1800, pp. 76-246.
  41. Michael, H.A., 2004. Seasonal dynamics in coastal aquifers: investigation of submarine groundwater discharge through field measurements and numerical models. PhD Dissertation, MIT.
  42. Michael, H.A., J.S. Lubetsky and C.F. Harvey, 2003.Characterizing submarine groundwater discharge: a seepage meter study in Waquoit Bay, Massachusetts. Geophys. Res. Lett., 30: doi:10.1029/2002GL016000.
  43. Milliman, J.D., 1993. Production and accumulation of calcium carbonate in the ocean: budget of a non-steady state. Glob. Biogeochem. Cycles, 7: 927-957. https://doi.org/10.1029/93GB02524
  44. Moore, W.S., 1996. Large groundwater inputs to coastal waters revealed by ^{226}Ra$ enrichments. Nature, 380: 612-614. https://doi.org/10.1038/380612a0
  45. Moore, W.S., 1999. The subterranean estuary: a reaction zone of groundwater and seawater. Mar. Chem., 65: 111-125. https://doi.org/10.1016/S0304-4203(99)00014-6
  46. Muir, K.S., 1968. Groundwater reconnaissance of the Santa Babara-Montecito Sea, Santa Barbara County, California. U. S. Geol. Surv. Water-Supply Pap., 1859-A, 28pp.
  47. Mulligan, A.E. and M.A. Charette, 2006. Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer. J. Hydrol., 327: 411-425. https://doi.org/10.1016/j.jhydrol.2005.11.056
  48. Nace, R.L., 1969. Groundwater: perspectives and prospects. Water Well J., 23: 28-29.
  49. Nace, R.L., 1970. World hydrology: status and prospects. In: Symposium on World Water Balance, Vol I. IARS Publication No.92. IAHS/UNESCO: Louvain, pp. 1-10.
  50. Oberdorfer, J.A., 2003. Hydrogeologic modeling of submarine groundwater discharge: comparison to other quantitative methods. Biogeochemistry, 66: 159-169. https://doi.org/10.1023/B:BIOG.0000006096.94630.54
  51. Oberdorfer, J.A., M.A. Valentino and S.V. Smith, 1990. Groundwater contribution to the nutrient budget of Tomales Bay, California. Biogeochemistry, 10: 199-216. https://doi.org/10.1007/BF00003144
  52. Park, W.B., S.K. Yang and G.W. Koh, 1994. Study on the fluctuations of groundwater levels in Cheju Island, Korea. J. Kor. Environ. Sci. Soc., 3: 333-348.
  53. Pashkovsky, I.S., 1969. Groundwater discharge to the Aral Sea at present and in future. Byull. Mosk. O-va. Ispyt. Prir., Geol., 4: 110-118.
  54. Pluhowski, E.J. and I.H. Kantrowitz, 1964. Hydrology of the Babylon-Islip Area, Suffolk County, Long Island, New York. U.S. Geol. Surv. Water-Supply Pap., 1768, 120 pp.
  55. Reilly, T.E. and A.S. Goodman, 1987. Analysis of salt water upcoming beneath a pumping well. J. Hydrol., 89: 169-204. https://doi.org/10.1016/0022-1694(87)90179-X
  56. Robinson, M.A., 1996. A finite element model of submarine groundwater discharge to tidal esturine waters. PhD Dissertation. Virginia Polytechnic Institute, Blacksburg. Vrignia.
  57. Segol, G. and G.F. Pinder, 1976. Transient simulation of salt water intrusion in southerastern Florida. Water Res. Res., 12: 65-70. https://doi.org/10.1029/WR012i001p00065
  58. Semikhatov, A.N., 1954. Hydrogelogy. Selkhozgiz, Moscow, 328pp.
  59. Seiler, K.P., 2003. Potential areas of subsurface freshwater discharge to the oceans (abs.). In:Proceedings of the XXIII General Assembly of the International Union of Geodesy and Geophysics (IUGG). Sapporo, Japan.
  60. Sellinger, C.E., 1995. Groundwater flux into a portion of Eastern Lake Michigan. J. Great Lakes Res., 21: 53-63. https://doi.org/10.1016/S0380-1330(95)71020-6
  61. Shiklomanov, I.A., 1999. World Water Resources: Modern Assessment and Outlook for the 21st Century. In: International Hydrological Program. UNESCO, Paris.
  62. Simmons, G.M., 1992. Importance of submarine groundwater discharge (SGWO) and seawater cycling to the material flux across sediment/water interfaces in marine environments. Mar. Ecol. Prog. Ser., 84: 173-184. https://doi.org/10.3354/meps084173
  63. Smith, A.J. and S.P. Nield, 2003. Groundwater discharge from the superficial aquifer into Cockburn Sound Western Australia: estimation by inshore water balance. Biogeochemistry, 66: 125-144. https://doi.org/10.1023/B:BIOG.0000006152.27470.a9
  64. Takasaki, K.J. and S. Valenciano, 1969. Water in the Kahuhu area, Hawaii, U.S. Geol. Surv. Water-Supply Pap., 1874.
  65. Taniguchi, M, W.C. Burnett, J.E. Cable and J.V. Turner, 2002. Investigation of submarine groundwater discharge. Hydrol. process., 16: 2115-2129. https://doi.org/10.1002/hyp.1145
  66. Williams, M.O., 1946. Bahrain: port of peals and petroleum, Nation. Geograph., 89: 194-210.
  67. Yang, H.S., D.W. Hwang and G. Kim, 2002. Factors controlling excess radium in the Nakdong River estuary, Korea: submarine groundwater discharge versus desorption from riverine particles. Mar. Chem., 78: 1-8. https://doi.org/10.1016/S0304-4203(02)00004-X
  68. Yang, J.S., H.Y. Cho, S.T. Jeong and S.J Kim, 2004. Estimation of the groundwater discharges in Masan Bay Watershed. J. Kor. Soc. Coast. Ocean Engin., 16: 213-223.
  69. Yang, J.S., J.Y. Jeong, J.Y. Heo, S. Lee and J.Y. Choi, 1999. Chemical mass balance of materials in the Keum River estuary: 1. Seasonal distribution of nutrients. The Sea - J. Kor. Soc. Oceanogr., 4: 71-79.
  70. Younger, P.L., 1996. Submarine groundwater discharge. Nature, 382: 121-122. https://doi.org/10.1038/382121a0
  71. Zektzer, I.S., 1968. Natural resources of fresh groundwater of the area adjacent to the Baltic Sea. Nedra, Moscow, 105 pp.
  72. Zektzer, I.S., 1996. Groundwater discharge into the seas and oceans: state of the art. In Groundwater discharge in the coastal zone, Buddemeier R. W. (ed.). LOICZ/Russian Acadey of Sciences: Texel, Netherlands/Moscow, pp. 122-123.
  73. Zektzer, I.S., V.A. Ivanov and A.V. Meskheteli, 1973. The problem of direct groundwater discharge to the seas. J Hydrol., 20: 1-36. https://doi.org/10.1016/0022-1694(73)90042-5
  74. Zektzer, I.S. and H.A. Loaiciga, 1993. Groundwater fluxes in the global hydrologic cycle: past, present and future. J. Hydrol., 144: 405-427. https://doi.org/10.1016/0022-1694(93)90182-9