• Title/Summary/Keyword: subjective priors

Search Result 7, Processing Time 0.046 seconds

Adversarial Complementary Learning for Just Noticeable Difference Estimation

  • Dong Yu;Jian Jin;Lili Meng;Zhipeng Chen;Huaxiang Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.438-455
    • /
    • 2024
  • Recently, many unsupervised learning-based models have emerged for Just Noticeable Difference (JND) estimation, demonstrating remarkable improvements in accuracy. However, these models suffer from a significant drawback is that their heavy reliance on handcrafted priors for guidance. This restricts the information for estimating JND simply extracted from regions that are highly related to handcrafted priors, while information from the rest of the regions is disregarded, thus limiting the accuracy of JND estimation. To address such issue, on the one hand, we extract the information for estimating JND in an Adversarial Complementary Learning (ACoL) way and propose an ACoL-JND network to estimate the JND by comprehensively considering the handcrafted priors-related regions and non-related regions. On the other hand, to make the handcrafted priors richer, we take two additional priors that are highly related to JND modeling into account, i.e., Patterned Masking (PM) and Contrast Masking (CM). Experimental results demonstrate that our proposed model outperforms the existing JND models and achieves state-of-the-art performance in both subjective viewing tests and objective metrics assessments.

Robust Bayes and Empirical Bayes Analysis in Finite Population Sampling

  • Dal Ho Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.63-73
    • /
    • 1995
  • We consider some robust Bayes estimators using ML-II priors as well as certain empirical Bayes estimators in estimating the finite population mean. The proposed estimators are compared with the sample mean and subjective Bayes estimators in terms of "posterior robustness" and "procedure robustness".re robustness".uot;.

  • PDF

Robust Bayes and Empirical Bayes Analysis in Finite Population Sampling with Auxiliary Information

  • Kim, Dal-Ho
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.3
    • /
    • pp.331-348
    • /
    • 1998
  • In this paper, we have proposed some robust Bayes estimators using ML-II priors as well as certain empirical Bayes estimators in estimating the finite population mean in the presence of auxiliary information. These estimators are compared with the classical ratio estimator and a subjective Bayes estimator utilizing the auxiliary information in terms of "posterior robustness" and "procedure robustness" Also, we have addressed the issue of choice of sampling design from a robust Bayesian viewpoint.

  • PDF

Bayesian Interval Estimation of Tobit Regression Model (토빗회귀모형에서 베이지안 구간추정)

  • Lee, Seung-Chun;Choi, Byung Su
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.737-746
    • /
    • 2013
  • The Bayesian method can be applied successfully to the estimation of the censored regression model introduced by Tobin (1958). The Bayes estimates show improvements over the maximum likelihood estimate; however, the performance of the Bayesian interval estimation is questionable. In Bayesian paradigm, the prior distribution usually reflects personal beliefs about the parameters. Such subjective priors will typically yield interval estimators with poor frequentist properties; however, an objective noninformative often yields a Bayesian procedure with good frequentist properties. We examine the performance of frequentist properties of noninformative priors for the Tobit regression model.

A Bayesian Estimation of Price for Commercial Property: Using subjective priors and a kriging technique (상업용 토지 가격의 베이지안 추정: 주관적 사전지식과 크리깅 기법의 활용을 중심으로)

  • Lee, Chang Ro;Eum, Young Seob;Park, Key Ho
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.5
    • /
    • pp.761-778
    • /
    • 2014
  • There has been relatively little study to model price for commercial property because of its low transaction volume in the market. Despite of this thin market character, this paper tried to estimate prices for commercial lots as accurate as possible. We constructed a model whose components consist of mean structure(global trend), exponential covariance function and a pure error term, and applied it to actual sales price data of Seoul. We explicitly took account of spatial autocorrelation of land price by utilizing a kriging technique, a representative method of spatial interpolation, because the land price of commercial lots has feature of differential price forming pattern depending on submarkets they belong to. In addition, we chose to apply a bayesian kriging to overcome data scarcity by incorporating experts' knowledge into prior probability distribution. The chosen model's excellent performance was verified by the result from validation data. We confirmed that the excellence of the model is attributed to incorporating both autocorexperts' knowledge and spatial autocorrelation in the model construction. This paper is differentiated from previous studies in the sense that it applied the bayesian kriging technique to estimate price for commercial lots and explicitly combined experts' knowledge with data. It is expected that the result of this paper would provide a useful guide for the circumstances under which property price has to be estimated reliably based on sparse transaction data.

  • PDF

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

A State-space Production Assessment Model with a Joint Prior Based on Population Resilience: Illustration with the Common Squid Todarodes pacificus Stock (자원복원력 개념을 적용한 사전확률분포 및 상태공간 잉여생산 평가모델: 살오징어(Todarodes pacificus) 개체군 자원평가)

  • Gim, Jinwoo;Hyun, Saang-Yoon;Yoon, Sang Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.2
    • /
    • pp.183-188
    • /
    • 2022
  • It is a difficult task to estimate parameters in even a simple stock assessment model such as a surplus production model, using only data about temporal catch-per-unit-effort (CPUE) (or survey index) and fishery yields. Such difficulty is exacerbated when time-varying parameters are treated as random effects (aka state variables). To overcome the difficulty, previous studies incorporated somewhat subjective assumptions (e.g., B1=K) or informative priors of parameters. A key is how to build an objective joint prior of parameters, reducing subjectivity. Given the limited data on temporal CPUEs and fishery yields from 1999-2020 for common squid Todarodes pacificus, we built a joint prior of only two parameters, intrinsic growth rate (r) and carrying capacity (K), based on the resilience level of the population (Froese et al., 2017), and used a Bayesian state-space production assessment model. We used template model builder (TMB), a R package for implementing the assessment model, and estimating all parameters in the model. The predicted annual biomass was in the range of 0.76×106 to 4.06×106 MT, the estimated MSY was 0.13×106 MT, the estimated r was 0.24, and the estimated K was 2.10×106 MT.