• Title/Summary/Keyword: subgrade settlement

Search Result 62, Processing Time 0.034 seconds

Applicability of Optimum Algorithm for Automated Design of Electric Railway Pole Foundation (전철주기초 설계 자동화를 위한 최적화 알고리즘의 적용성 검토)

  • Lee, Gi-Yeol;Park, Yong-Dae;Chung, Won-Yong;Song, Kyu-Seok;Lim, Sun-Taek;Kim, Jong-Nam;Lee, Su-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1047-1053
    • /
    • 2009
  • This paper examined an applicability of optimum algorithm to develope an electric railway pole foundation automated design system. Based on the optimization theory that considered subgrade and bearing capacity characteristics, decided an optimum section of electric railway pole foundation. In this research, Optimum algorithm used the feasible direction method in structural analysis and design efficiently. Design variables are considered geometric properties and anchor bolt area of the electric railway pole foundation as optimum construction cost. Constraints are considered settlement., overturning and activity of foundation. And, also composed flexural and shearing strength. According to optimum analysis result., optimization theory is available more economical design comparing with railway pole foundation that is constructed by current standard drawing, and applicability verified in automated design system development.

  • PDF

Application of genetic Algorithm to the Back Analysis of the Underground Excavation System (지하굴착의 역해석에 대한 유전알고리즘의 적용)

  • 장찬수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.65-84
    • /
    • 2002
  • The Observational Method proposed by Terzaghi can be applied for the safe and economic construction projects where the exact prediction of the behavior of the structures is difficult as in the underground excavation. The method consists of measuring lateral displacement, ground settlement and axial force of supports in the earlier stage of the construction and back analysis technique to find the best fit design parameters such as earth pressure coefficient, subgrade reaction etc, which will minimize the gap between calculated displacement and measured displacement. With the results, more reliable prediction of the later stage can be obtained. In this study, back analysis programs using the Direct Method, based on the Hill Climbing Method were made and evaluated, and to overcome the limits of the method, Genetic Algorithm(GA) was applied and tested for the actual construction cases.

  • PDF

Application of Paper Sludge Ash-Stabilized Soft Ground for Subgrade Soil (제지애쉬 고화제로 안정처리된 연약지반의 도로노상토 적용에 관한 연구)

  • Shin, Eunchul;Park, Sooyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.6
    • /
    • pp.13-22
    • /
    • 2018
  • The southwestern part of Korean Peninsula, which length is about 13,000 km, is largely formed with soft cohesive soil ground and when it is developed, the low bearing capacity and excessive settlement of soft ground give many problems. In particular, a lot of clayey soil is deserted due to high moisture content and weakness, and areas formed with soft ground. In this study it was performed unconfined compression test, CBR tests, laboratory frost heaving test, and wheel tracking test in order to determine the optimum mixture ratio of paper sludge ash added chemical stabilizer with soft soil for consideration of its frost heaving and strength characteristics. As a results of the above experiments, when the soft soil is mixed with 6% of chemical stabilizer to improve the soft soil for utilizing as a subgrade soil material. It is satisfied the quality standard of fill materials, and the results of this research are expected to be used as an appropriate usage standard for utilization of on-site soil generated.

Continuous deformation measurement for track based on distributed optical fiber sensor

  • He, Jianping;Li, Peigang;Zhang, Shihai
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Railway tracks are the direct supporting structures of the trains, which are vulnerable to produce large deformation under the temperature stress or subgrade settlement. The health status of track is critical, and the track should be routinely monitored to improve safety, lower the risk of excess deformation and provide reliable maintenance strategy. In this paper, the distributed optical fiber sensor was proposed to monitor the continuous deformation of the track. In order to validate the feasibility of the monitoring method, two deformation monitoring tests on one steel rail model in laboratory and on one real railway tack in outdoor were conducted respectively. In the model test, the working conditions of simply supported beam and continuous beam in the rail model under several concentrated loads were set to simulate different stress conditions of the real rail, respectively. In order to evaluate the monitoring accuracy, one distributed optical fiber sensor and one fiber Bragg grating (FBG) sensor were installed on the lower surface of the rail model, the strain measured by FBG sensor and the strain calculated from FEA were taken as measurement references. The model test results show that the strain measured by distributed optical fiber sensor has a good agreement with those measured by FBG sensor and FEA. In the outdoor test, the real track suffered from displacement and temperature loads. The distributed optical fiber sensor installed on the rail can monitor the corresponding strain and temperature with a good accuracy.

Development of a Numerical Method of Vertical Train/Track Interaction in the Track Section with Hanging Sleepers (뜬침목구간에서 차량/궤도 상호작용 수치해석기법 개발)

  • Yang, Sin-Chu;Lee, Jee-Ha
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.251-256
    • /
    • 2012
  • Hanging sleepers are frequently observed in the ballasted track with the rail of high rigidity. These hanging sleepers at the high speed line could cause such large dynamic force compared to those at the conventional line. This dynamic force would, in turn, deteriorate train running stability as well as riding comfort, and accelerate irregularity of track and failure of track materials, leading to a sharp increase in track maintenance cost. When the wheel-rail contact spring exhibits nonlinear behavior and some components of the system like hanging sleeper exhibit bi-linear behaviors, an effective analytical method is proposed for train-track interactions. The verification of the present method is carried out comparing numerical results by the present method and those by Ono's method of RTRI.

Evaluation of Concrete-Track Deformation for High-Speed Railways by Characteristic Stiffness (강성특성치를 이용한 고속전철 콘크리트궤도의 처짐가능성 평가)

  • Joh, Sung-Ho;Lee, Il-Wha;Hwang, Seon-Keun;Kang, Tae-Ho;Kim, Seok-Chul
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.641-646
    • /
    • 2009
  • Concrete tracks are superior to ballast tracks in the aspect of durability, maintenance and safety. However, deteriorated stiffness of railroad bed and settlement of soft ground induced by trapped or seepage water lead to problems in safety of train operation. In this research, characteristic stiffness of concrete tracks, which is determined from FRACTAL (Flexural-Rigidity Assessment of Concrete Tracks by Antisymmetric Lamb Waves) technique, was employed as an index of track displacement. The characteristic stiffness is defined using Poisson's ratio, moment of inertia and stiffness ratio of subgrade to slab. To verify validity and reliability of the proposed characteristic stiffness, experimental and theoretical researches were performed. Feasibility of the characteristic stiffness based on FRACTAL technique was proved at a real concrete track for Korean high-speed trains. Validity of the FRACTAL technique was also verified by comparing the results of impulse-response tests performed at the same measurement array and the results of SASW tests and DC resistivity survey performed at a shoulder nearby the track.

  • PDF

Wetting-Induced Collapse in Fill Materials for Concrete Slab Track of High Speed Railway (고속철도 콘크리트궤도 흙쌓기재료의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.79-88
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in bout 400 km section in 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350 km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing (Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, focusing on various soil/rock type, stress levels, wetting condition more closely.

Bearing Capacity of Waste Landfill Reinforced by Geosynthetics (토목섬유로 보강된 폐기물 매립지반의 지지력 특성)

  • Shin, Eun-Chul;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.39-46
    • /
    • 2007
  • Many industrialized countries of the world have many problems about the reuse of waste landfill area because the increase of terminated waste disposal landfill. Especially, the effective use of the terminated waste disposal landfill nearby the urban area has been demanded, because of the lack of the usable land. However, the reuse of terminated waste disposal landfill site is needed an adequate stabilization of ground for increasing the bearing capacity and reduce the allowable settlement for the given structure. This study is to evaluate the applicability of geosynthetics for the increment of bearing capacity of solid waste landfill ground. The in-situ cyclic plate loading tests were performed to determine the dynamic and static behaviors of reinforced ground with geosynthetics. Four series of test were conducted with variations of geosynthetics, number of geogrid layer. Based on the cyclic plate load test results, the bearing capacity ratio, subgrade modulus of ground, and the elastic rebound ratio were determined.

  • PDF

Mechanical Properties of Controlled Low Strength Materials with Marine Dredged Soil (해양준설토를 이용한 유동성 뒤채움재의 역학적 특성)

  • Kim, Ju-Deuk;Lee, Byung-Sik;Lee, Kwan-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.35-44
    • /
    • 2007
  • Plowable fill is generally a mixture of sand, fly ash, a small amount of cement and water. Sand is the major component of most flowable fill mixes. Marine dredged soil was adopted for flowable fill instead of fly ash. Natural sea sand and in-situ soil were used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The unconfined compression test necessary to sustain walkability as the fresh flowble fill hardens was determined and the strength at 3-days appeared to correlate well with the water-to-cement ratio. The strength parameters, like cohesion and internal friction angle, was determined along the curing time. The creep test for settlement potential was conducted. Also, potable falling weight deflectometer(PFWD) test has been carried out for elastic modulus of each controlled low strength materials(CLSM). The data presented show that marine dredged soil and in-situ soil can be successfully used in CLSM.

Numerical Predictions of the Load-Displacement Curves of Rock-Socketed Concrete Piles

  • Kwon, Oh-Sung;Kim, Jeong-Hwan;Jeon, Kyung-Soo;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.151-160
    • /
    • 1999
  • The settlement limit concept is generally adopted as design criteria of rock-socketed pile foundations, therefore, the load-displacement$(\sigma-\sigma)$ behavior of the rock-socketed piles should be well understood at the design stage, which, however, is hard to achieve due to its complexity. To help this out, field pile load tests are executed on cast-in-situ concrete piles, first, to figure out the $\sigma$-$\delta$ behavior of rock-socketed piles. Next, the $\sigma-\sigma$ relations of the piles are simulated numerically using commercial package program(ELAC) varying a couple of input data which are sensitive in shaping the $\sigma$-$\delta$ curves. Finally, the relation between the best input data for the numerical simulations and the geotechnical field data are cultivated to generalize the numerical simulation procedures, which enables geotechnical engineers to predict the $\sigma$-$\delta$ behavior at the design stage, if appropriate geotechnical field data are provided.

  • PDF