• 제목/요약/키워드: subdifferential of a convex function

검색결과 5건 처리시간 0.02초

MAXIMAL MONOTONE OPERATORS IN THE ONE DIMENSIONAL CASE

  • Kum, Sang-Ho
    • 대한수학회지
    • /
    • 제34권2호
    • /
    • pp.371-381
    • /
    • 1997
  • Our basic concern in this paper is to investigate some geometric properties of the graph of a maximal monotone operator in the one dimensional case. Using a well-known theorem of Minty, we answer S. Simon's questions affirmatively in the one dimensional case. Further developments of these results are also treated. In addition, we provide a new proof of Rockafellar's characterization of maximal monotone operators on R: every maximal monotne operator from R to $2^R$ is the subdifferential of a proper convex lower semicontinuous function.

  • PDF

A NOTE ON A REGULARIZED GAP FUNCTION OF QVI IN BANACH SPACES

  • Kum, Sangho
    • 충청수학회지
    • /
    • 제27권2호
    • /
    • pp.271-276
    • /
    • 2014
  • Recently, Taji [7] and Harms et al. [4] studied the regularized gap function of QVI analogous to that of VI by Fukushima [2]. Discussions are made in a finite dimensional Euclidean space. In this note, an infinite dimensional generalization is considered in the framework of a reflexive Banach space. To do so, we introduce an extended quasi-variational inequality problem (in short, EQVI) and a generalized regularized gap function of EQVI. Then we investigate some basic properties of it. Our results may be regarded as an infinite dimensional extension of corresponding results due to Taji [7].

A REMARK ON THE REGULARIZED GAP FUNCTION FOR IQVI

  • Kum, Sangho
    • 충청수학회지
    • /
    • 제28권1호
    • /
    • pp.145-150
    • /
    • 2015
  • Aussel et al. [1] introduced the notion of inverse quasi-variational inequalities (IQVI) by combining quasi-variational inequalities and inverse variational inequalities. Discussions are made in a finite dimensional Euclidean space. In this note, we develop an infinite dimensional version of IQVI by investigating some basic properties of the regularized gap function of IQVI in a Banach space.

Characterization of Weak Asplund Space in Terms of Positive Sublinear Functional

  • Oh, Seung Jae
    • 충청수학회지
    • /
    • 제1권1호
    • /
    • pp.71-76
    • /
    • 1988
  • For each continuous convex function ${\phi}$ defined on an open convex subset $A_{\phi}$ of a Banach space X, if we define a positively homogeneous sublinear functional ${\sigma}_x$ on X by ${\sigma}_x(y)=\sup{\lbrace}f(y)\;:\;f{\in}{\partial}{\phi}(x){\rbrace}$, where ${\partial}{\phi}(x)$ is a subdifferential of ${\phi}$ at x, then we get the following characterization theorem of Gateaux differentiability (weak Asplund) sapce. THEOREM. For every ${\phi}$ above, $D_{\phi}={\lbrace}x{\in}A\;:\;\sup_{||u||=1}\;{\sigma}_x(u)+{\sigma}_x(-u)=0{\rbrace}$ contains dense (dense $G_{\delta}$) subset of $A_{\phi}$ if and only if X is a Gateaux differentiability (weak Asplund) space.

  • PDF