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ON SOLUTION SET FOR CONVEX OPTIMIZATION

PROBLEM WITH CONVEX INTEGRABLE OBJECTIVE

FUNCTION AND GEOMETRIC CONSTRAINT SET

Gue Myung Lee* and Jae Hyoung Lee**

Abstract. In this paper, we consider a convex optimization prob-
lem with a convex integrable objective function and a geometric
constraint set. We characterize the solution set of the problem
when we know its one solution.

1. Introduction and preliminaries

Convex optimization problems often have multiple solutions. Re-
cently, Mangasarian [10] established simple and complete characteriza-
tions for the solution set of the problem when we knew one solution
of the problem. Since then, many authors have studied such charac-
terizations for solution sets of several classes of optimization problems
[2, 3, 5, 6, 8, 9, 11, 12, 13, 15]. In particular, Jeyakumar, Lee and Dinh
[5] showed that the Lagrangian function of a cone-constrained convex
optimization problem, which has a cone-inequality constraint, is con-
stant on its solution set, and then derived the Lagrange multiplier based
characterizations of the solution set when we know one solution of the
solution set. Moreover, Jeyakumar, Lee and Li [7] developed the char-
acterizations of the solution sets to convex optimization problems in the
face of data uncertainty.
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In this paper, we characterize all the solutions of a convex optimiza-
tion problem with a convex integrable objective function and a geometric
constraint set when we know its one solution.

We begin this section by fixing notation and definitions. Throughout
this paper, we denote the Euclidean space with dimension n by Rn. The
inner product 〈·, ·〉 is defined on Rn. The norm of x ∈ Rn is defined by

‖x‖ =
√
〈x, x〉. A function ϕ : Rn → R is said to be convex if for all

µ ∈ [0, 1], ϕ((1 − µ)x + µy) ≤ (1 − µ)ϕ(x) + µϕ(y) for all x, y ∈ Rn.
Let A be a closed and convex set in a Hilbert space H which has the
inner product 〈·, ·〉 defined on H. The indicator function δA respect to
a subset A of H, is defined by

δA(x) :=

{
0, if x ∈ A,

+∞, otherwise.

The (convex) normal cone of A at a point x ∈ H is defined as

NA(x) :=

{
{y ∈ H : 〈y, a− x〉 ≤ 0 for any a ∈ A}, if x ∈ A,

∅, otherwise.

The (convex) subdifferential of f : H → R at x ∈ Rn is defined by

∂f(x) := {z ∈ H : 〈z, y − x〉 ≤ f(y)− f(x) for any y ∈ H}.

2. Solution sets

Let ϕ : Rn → R be a globally Lipchitz function, i.e., there exists
K > 0 such that for all x, y ∈ Rn, |ϕ(x) − ϕ(y)| 5 K‖x − y‖. We
suppose that ϕ is convex. Let C be a nonempty closed convex subset
of L2

n[a, b], where L2
n[a, b] refers to the set of 2-integrable functions from

[a, b] to Rn with the inner product 〈·, ·〉 defined by for any x, y ∈ L2
n[a, b],

〈x, y〉 =
∫ b
a x(t)T y(t)dt.

Consider the following convex optimization problem:

(P) min
x∈C

f(x) :=

∫ b

a
ϕ(x(t))dt.

Let S := {x ∈ C | f(y) = f(x), ∀y ∈ C}. Then S is the set of solutions
of (P). We assume that S 6= ∅. We note that f is globally Lipchitz on
L2
n[a, b] and f is convex.

The following Proposition is well-known in [14]. But we give its proof
for completeness.
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Proposition 2.1. x̄ ∈ S if and only if there exists ξ ∈ ∂f(x̄) such

that 〈ξ, x− x̄〉 = 0 for any x ∈ C, that is,
∫ b
a ξ(t)

T (x(t)− x̄(t))dt = 0 for
any x ∈ C.

Proof. x̄ ∈ S if and only if 0 ∈ ∂(f + δC)(x̄), i.e., 0 ∈ ∂f(x̄) +NC(x̄).
So, the result of the proposition holds.

Theorem 2.2. Let x̄ ∈ S. Then the solution set S of (P) is charac-
terized as follows:

S = {x ∈ C | ∃ξ ∈ L2
n[a, b] s.t. ξ(t) ∈ ∂ϕ(x(t)) ∩ ∂ϕ(x̄(t)) a.e. on [a, b]

and

∫ b

a
ξ(t)T (x(t)− x̄(t))dt = 0}.

Proof. (1) Since f is continuous and convex, ∂f(x̄) 6= ∅. Since x̄ ∈ S,
there exists ξ ∈ ∂f(x̄) such that 〈ξ, x− x̄〉 = 0 for all x ∈ C. Let x̃ ∈ S.
Then 〈ξ, x̃ − x̄〉 = 0. Since ξ ∈ ∂f(x̄), 0 = f(x̃) − f(x̄) = 〈ξ, x̃ − x̄〉.
Thus, 〈ξ, x̃− x̄〉 = 0. So, for any x ∈ L2

n[a, b], we have

f(x) = f(x̄) + 〈ξ, x− x̄〉
= f(x̄) + 〈ξ, x− x̃〉+ 〈ξ, x̃− x̄〉
= f(x̃) + 〈ξ, x− x̃〉,

and hence ξ ∈ ∂f(x̃). Consequently, if x̃ ∈ S, then there exists ξ ∈
∂f(x̄) ∩ ∂f(x̃) such that 〈ξ, x̃− x̄〉 = 0.

(2) Let x, v ∈ L2
n[a, b]. We will prove that f ′(x; v) 5

∫ b
a ϕ
′(x(t); v(t))dt,

where f ′(x; v) = lim
α↓0

f(x+αv)−f(x)
α and ϕ′(x(t); v(t)) = lim

α↓0
ϕ(x(t)+αv(t))−ϕ(x(t))

α .

We can fine a sequence {αn} ↓ 0 such that

f ′(x; v) = lim
n→∞

f(x+ αnv)− f(x)

αn
.

Thus we have

f ′(x; v) = lim
n→∞

∫ b

a

ϕ(x(t) + αnv(t))− ϕ(x(t))

αn
dt.

Since ϕ is globally Lipschitz, there exists K > 0 such that

ϕ(x(t) + αnv(t))− ϕ(x(t))

αn
5 K‖v(t)‖ for any t ∈ [a, b].
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So, we have

f ′(x; v)

= − lim
n→∞

∫ b

a

(
−ϕ(x(t) + αnv(t))− ϕ(x(t))

αn

)
dt

= − lim
n→∞

∫ b

a

(
−K‖v(t)‖+K‖v(t)‖ − ϕ(x(t) + αnv(t))− ϕ(x(t))

αn

)
dt

=

∫ b

a
K‖v(t)‖dt− lim

n→∞

∫ b

a

(
K‖v(t)‖ − ϕ(x(t) + αnv(t))− ϕ(x(t))

αn

)
dt.

By Fatou’s Lemma,

f ′(x; v)

5
∫ b

a
K‖v(t)‖dt−

∫ b

a
lim inf
n→∞

(
K‖v(t)‖ − ϕ(x(t) + αnv(t))− ϕ(x(t))

αn

)
dt

= −
∫ b

a
lim inf
n→∞

(
−ϕ(x(t) + αnv(t))− ϕ(x(t))

αn

)
dt

=

∫ b

a
lim sup
n→∞

ϕ(x(t) + αnv(t))− ϕ(x(t))

αn
dt

=

∫ b

a
lim
n→∞

ϕ(x(t) + αnv(t))− ϕ(x(t))

αn
dt

=

∫ b

a
ϕ′(x(t); v(t))dt.

Hence we have,

(2.1) f ′(x; v) 5
∫ b

a
ϕ′(x(t); v(t))dt.

Let x, v ∈ L2
n[a, b]. For each t ∈ [a, b], ϕ′(x(t); v(t)) = max{〈y, v(t)〉 :

y ∈ ∂ϕ(x(t))}. Since ∂ϕ is an upper semicontinuous multifunction (see
Proposition 1.5 (e) in page 73 of [4] and Proposition 4.3 in page 80 of
[4]), ∂ϕ is measurable. Since x(·) is a measurable function, a multifunc-
tion t 7→ ∂ϕ(x(t)) is measurable. Following the proofs of Lemma 8.2.3,
Theorem 8.2.9, Lemma 8.2.12 and Theorem 8.2.11 in [1], we can prove
that a multifunction

t 7→ {r′ ∈ ∂ϕ(x(t)) : 〈r′, v(t)〉 = max
y∈∂ϕ(x(t))

〈y, v(t)〉}

is measurable and closed-valued. So, by measurable selection theorem
(see Theorem 5.3 in page 151 of [4]), there exists a measurable function
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ξ : [a, b]→ Rn such that for any t ∈ [a, b]

ξ(t) ∈ ∂ϕ(x(t)) and 〈ξ(t), v(t)〉 = ϕ′(x(t); v(t)).

Here, since ξ(t) ∈ ∂ϕ(x(t)) and ϕ is globally Lipschitz, there exists
K = 0 such that ‖ξ(t)‖ 5 K for all t ∈ [a, b]. Thus ξ ∈ L2

n[a, b]. Thus
from (2.1),

f ′(x; v) 5
∫ b

a
ϕ′(x(t); v(t))dt

= 〈ξ, v〉
5 max{〈ξ′, v〉 : ξ′ ∈ L2

n[a, b], ξ′(t) ∈ ∂ϕ(x(t)) a.e. on [a, b]}.

Let W = {ξ′ ∈ L2
n[a, b] : ξ′(t) ∈ ∂ϕ(x(t)) a.e. on [a, b]}. Then W is

convex and weakly closed. Since f ′(x; v) = max
ξ′∈∂f(x)

〈ξ′, v〉 5 max
ξ′∈W
〈ξ′, v〉,

by Proposition 1.3 (c) in page 72 of [4], ∂f(x) ⊂ W . Let ξ ∈ W . Then
ξ(t) ∈ ∂ϕ(x(t)) a.e. on [a, b]. So, for any y ∈ L2

n[a, b],

ϕ(y(t)) = ϕ(x(t)) + 〈ξ(t), y(t)− x(t)〉 a.e..

Hence
∫ b
a ϕ(y(t))dt =

∫ b
a ϕ(x(t))dt+

∫ b
a ξ(t)

T (y(t)− x(t))〉dt for any y ∈
L2
n[a, b], i.e., f(y) = f(x) + 〈ξ, y − x〉 for any y ∈ L2

n[a, b]. Hence ξ ∈
∂f(x). Thus, W ⊂ ∂f(x). Consequently,

(2.2) ∂f(x) = {ξ ∈ L2
n[a, b] : ξ(t) ∈ ∂ϕ(x(t)) a.e. on [a, b]}.

(3) From (1), if x ∈ S, then there exists ξ ∈ ∂f(x) ∩ ∂f(x̄) such that
〈ξ, x − x̄〉 = 0. Let x ∈ C be such that there exists ξ ∈ ∂f(x) ∩ ∂f(x̄)
such that 〈ξ, x − x̄〉 = 0. Then f(x̄) = f(x) + 〈ξ, x̄ − x〉 = f(x). Since
x ∈ C, x ∈ S. Hence, we have

S = {x ∈ C : there exists ξ ∈ ∂f(x) ∩ ∂f(x̄) such that 〈ξ, x− x̄〉 = 0}.
Thus, from (2.2),

S = {x ∈ C : ∃ξ ∈ L2
n[a, b] such that ξ(t) ∈ ∂ϕ(x(t)) ∩ ∂ϕ(x̄(t))

a.e. on [a, b] and

∫ b

a
〈ξ(t), x(t)− x̄(t)〉dt = 0}.

Example 2.3. Let ϕ(x) := max{|x|−1, 0} and let f(x) :=
∫ 1
−1 ϕ(x(t))dt,

x ∈ L2
1[−1, 1]. Let C = {x ∈ L2

1[−1, 1] : x(t) ∈ [−1, 1] ∀t ∈ [−1, 1]} and
let S := {x ∈ C : f(y) = f(x) ∀y ∈ C}. Then we can check that
S = C. Let x̄ = 0 ∈ C. Moreover, {x ∈ C : ∃ξ ∈ L2

1[−1, 1] s.t. ξ(t) ∈
∂ϕ(x(t))∩∂ϕ(x̄(t)) a.e. on [−1, 1] and

∫ 1
−1 ξ(t)(x(t)− x̄(t))dt = 0} = C.
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Thus, Theorem 2.2 holds.

Remark 2.4. The part (2) of the proof of Theorem 2.2 can be ob-
tained from Theorem 5.18 in page 160 of [4]. The Theorem 5.18 states
the characterizations of limiting subdifferential and generalized gradient
of the integral function. But we give its proof for completeness.
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[2] J. V. Burke and M. Ferris, Characterization of solution sets of convex programs,

Oper. Res. Lett. 10 (1991), 57-60.
[3] M. Castellani and M. Giuli, A characterization of the solution set of pseudo-

convex extremum problems, J. Convex Anal. 19 (2012), 113-123.
[4] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth

Analysis and Control Theory, Springer-Verlag, New York, Inc., 1998.
[5] V. Jeyakumar, G. M. Lee, and N. Dinh, Lagrange multiplier conditions charac-

terizing optimal solution sets of cone-constrained convex programs, J. Optim.
Theor. Appl. 123 (2004), 83-103.

[6] V. Jeyakumar, G. M. Lee, and N. Dinh, Characterizations of solution sets of
convex vector minimization problems, Eur. J. Oper. Res. 174 (2006), 1380-1395.

[7] V. Jeyakumar, G, M. Lee, and G. Li, Characterizing Robust Solution Sets of
Convex Programs under Data Uncertainty, J. Optim. Theory Appl. 164 (2015),
407-435.

[8] V. Jeyakumar and X. Q. Yang, On characterizing the solution sets of pseudo-
linear programs, J. Optim. Theory Appl. 87 (1995), 747-755.

[9] C. S. Lalitha and M. Mehta, Characterizations of solution sets of mathematical
programs in terms of Lagrange multipliers, Optimization 58 (2009), 995-1007.

[10] O. L. Mangasarian, A simple characterization of solution sets of convex pro-
grams, Oper. Res. Lett. 7 (1988), 21-26.

[11] J. P. Penot, Characterization of solution sets of quasiconvex programs, J. Op-
tim. Theory Appl. 117 (2003), 627-636.

[12] T. Q. Son and N. Dinh, Characterizations of optimal solution sets of convex
infinite programs, TOP. 16 (2008), 147-163.

[13] Z. L. Wu and S. Y. Wu, Characterizations of the solution sets of convex pro-
grams and variational inequality problems, J. Optim. Theory Appl. 130 (2006),
339-358.

[14] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, 2002.
[15] K. Q. Zhao and X. M. Yang, Characterizations of the solution set for a class

of nonsmooth optimization problems, Optim. Lett. 7 (2013), 685-694.



On solution set for convex optimization problem 35

*
Department of Applied Mathematics
Pukyong National University
Busan 48513, Republic of Korea
E-mail : gmlee@pknu.ac.kr

**
Department of Applied Mathematics
Pukyong National University
Busan 48513, Republic of Korea
E-mail : mc7558@naver.com


