• Title/Summary/Keyword: sub-solution

Search Result 2,560, Processing Time 0.024 seconds

Structure and Elastic Properties of (Nb1-xTax)C, (Nb1-xHfx)C, Ultra-High Temperature Solid Solution Ceramics using the First Principles Calculation (제1원리계산을 이용한 (Nb1-xTax)C, (Nb1-xHfx)C 초고온 세라믹 고용체의 구조 및 탄성특성)

  • Kim, Myungjae;Kim, Jiwoo;Kim, Jiwoong;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.682-689
    • /
    • 2021
  • NbC, HfC, TaC, and their solid solution ceramics have been identified as the best materials for ultrahigh-temperature ceramics. However, their structural stability and elastic properties are mostly unclear. Thus, we investigated structure and elastic properties of (Nb1-xTax)C and (Nb1-xHfx)C solid solutions via ab initio calculations. Our calculated results show that the stability of (Nb1-xTax)C and (Nb1-xHfx)C increases with the increase of Hf and Ta content, and (Nb1-xHfx)C is more stable than (Nb1-xTax)C at the same content of Hf and Ta. The lattice constants decrease with increasing of Hf and Ta content. (Nb1-xTax)C and (Nb1-xHfx)C carbides are mechanically stable and brittle. Bulk modulus of (Nb1-xTax)C increases with increasing Ta content. In contrast, bulk modulus of (Nb1-xHfx)C decreases with increasing Hf content. Hardness of solid solutions shows the highest values at the (Nb0.25Ta0.75)C and (Nb0.75Hf0.25)C. In particular, (Nb0.75Hf0.25)C shows the highest hardness for the current system. The results indicate that the overall mechanical properties of (Nb1-xHfx)C solid solutions are superior to those of (Nb1-xTax)C solid solutions. Therefore, controlling the Hf and Ta element and content of the (Nb1-xTax)C and (Nb1-xHfx)C Solid solution is crucial for optimizing the material properties.

Evaluating the Performance of Blended Fertilizer Draw Solution in Reuse of Sewage Water Using Forward Osmosis (정삼투를 이용한 하수의 재이용에서 혼합비료 유도용액의 성능 평가)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.90-96
    • /
    • 2020
  • This paper aims to reuse sewage by a forward osmosis using a blended fertilizer as a draw solution. This work deals with the primary sedimentation basin influent, effluent, and secondary sedimentation basin effluent from J sewage treatment plant. The average permeate water flux was higher in the order of the blend of KCl and NH4Cl > KCl and NH4H2PO4 > KCl and (NH4)2HPO4, and the reverse solute flux was lower in the order of the blend of KCl and NH4H2PO4 < KCl and NH4Cl < KCl and (NH4)2HPO4. Regardless of the blended fertilizer, the permeate water flux of the effluent from the secondary sedimentation basin was the highest. The blended fertilizer of KCl and NH4H2PO4 was found to be most useful for the reuse of sewage because it contains nitrogen, phosphorus and potassium, which are the major components of a fertilizer, and has a low reverse solute flux. When the blend of KCl and NH4H2PO4 was used as a draw solution, the average permeate water and reverse solute flux for the secondary sedimentation basin effluent were 12.14 L/㎡hr and 0.012 mol/㎡s, respectively.

Shipboard Verification Test of Onboard Carbon Dioxide Capture System (OCCS) Using Sodium Hydroxide(NaOH) Solution (가성소다(NaOH) 용액을 이용한 선상 이산화탄소 포집 장치의 선박 검증시험)

  • Gwang Hyun Lee;Hyung Ju Roh;Min woo Lee;Won Kyeong Son;Jae Yeoul Jeong;Tae-Hong Kim;Byung-Tak NAM;Jae-Ik Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.51-60
    • /
    • 2024
  • Hi Air Korea and Hanwha ocean are currently developing an Onboard Carbon dioxide Capture System (OCCS) to absorb CO2 emitted from ship's engine using a sodium hydroxide(NaOH) solution, and converting the resulting salt into a solid form through a chemical reaction with calcium oxide (CaO). The system process involves the following steps; 1)The reaction of CO2 gas absorption in water, 2)The reaction between carbonic acid (H2CO3) and NaOH solution to produce carbonate or bicarbonate, and 3)The reaction between carbonate or bicarbonate and CaO to form calcium carbonate (CaCO3). And ultimately, the solid material, CaCO3, is separated and discharged using a separator. The OCCS has been installed on an ship and the test results have confirmed significant reduction effects of CO2 in the ship's exhaust gas. A portion of the exhaust gas emitted from the engine was transferred to the OCCS using a blower. The flow rate of the transferred gas ranged from 800 to 1384 m3/hr, and the CO2 concentration in the exhaust gas was 5.1 vol% for VLSFO, 3.7 vol% for LNG and a 12 wt% NaOH solution was used. The results showed a CO2 capture efficiency of approximately 42.5 to 64.1 vol% and the CO2 capture rate approximately 48.4 to 52.2kg/hr. Additionally, to assess the impact of the discharged CaCO3on the marine ecosystem, we conducted "marine ecotoxicity test" and performed Computational Fluid Dynamics (CFD) analysis to evaluate the dispersion and dilution of the discharged effluent.

Corrosion Resistance of SPCC, SPFC590, SPFC780 Steel by Organic/Inorganic Hybrid Solution (Case of different SiO2 polysilicate under a constant melamin) (유/무기하이브리드 용액에 의한 SPCC, SPFC590, SPFC780 강판의 내식성 (일정한 멜라민에서 SiO2 polysilicate 양이 다른 경우))

  • Nam, Ki-Woo;Jeong, Hee-Rok;Lee, Kwang-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.5-13
    • /
    • 2017
  • This study has developed an organic/inorganic hybrid solution according to amount of $SiO_2$ polysilicate, and the amount of melamine is constant. The three types of cold rolled steel were evaluated a corrosion resistance properties by using these solutions. $US_3M_3$ and $US_{11}M_3$ solutions were generate a lot of corrosion. $US_7M_3$ solution was excellent in corrosion resistance, regardless of the steel type. The appearance of coating by $US_3M_3$ and $US_{11}M_3$ solutions were bumpy surface, and were a lot of fine defects. $US_7M_3$ solution was made a sophisticated molecular cross-linking structure inside the coating, it was a slick surface. Other characteristics are exhibited the excellent property for all solutions.

The Effects of Concentration of HAuCl4 Solution and UV Irradiation Time on Generation of Nano Gold Particles (나노 금 입자생성에 HAuCl4 용액의 농도와 UV 조사시간이 미치는 영향)

  • An, Jeong-Min;Lee, Chang-Whan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.21 no.6
    • /
    • pp.39-45
    • /
    • 2009
  • The importance of nano gold particles has been increased in the field of bio physics and medicine, recently. In this regard, the study aims to analyze how the harmless nano gold particles can be transformed by respective variables. In this study, electrospun PU nano-webs were impregnated with aqueous $HAuCl_4$ solution and UV light was irradiated on the webs. Au-ions were reduced to nano particles by photocatalytic reduction and these nano gold particles were characterized by SEM, UV-vis, Zetasizer, Spectrophotometer, EDS. $HAuCl_4$ solution concentration and UV irradiation time have heen examined to change the amount of absorption. Nano gold particles size and UV-Vis absorbances were increased with $HAuCl_4$ solution concentration and UV irradiation time.

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

Enhanced Moisture Resistance of Salt Core through 2D Kaolinite Colloidal Solution Coating

  • So-Yeon Yoo;Ahrom Ryu;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.154-158
    • /
    • 2023
  • This study aimed to improve the moisture resistance of salt cores by investigating the suitability of a two-dimensional kaolinite colloidal solution and a commercially available SiO2 ink solution as coating agents. X-ray diffraction analysis (XRD) results showed that the intercalation of urea into kaolinite did not significantly change its layer structure. Scanning electron microscopy (SEM) images revealed that the dip-coating only affected the surface of the salt core, and the texture of the surface is differ depending on the coating solution. The humidity absorption test results showed that both coatings reduced the hygroscopicity of the salt core by more than 50%. However, in the water-solubility test, the kaolinite dissolved with the salt core, whereas the SiO2-coated salt core left a residue. These results strongly suggest that with the coating of the exfoliated kaolinite solution, salt core will remain stable in humid environments.

SEMICLASSICAL ASYMPTOTICS OF INFINITELY MANY SOLUTIONS FOR THE INFINITE CASE OF A NONLINEAR SCHRÖDINGER EQUATION WITH CRITICAL FREQUENCY

  • Aguas-Barreno, Ariel;Cevallos-Chavez, Jordy;Mayorga-Zambrano, Juan;Medina-Espinosa, Leonardo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.241-263
    • /
    • 2022
  • We consider a nonlinear Schrödinger equation with critical frequency, (P𝜀) : 𝜀2∆v(x) - V(x)v(x) + |v(x)|p-1v(x) = 0, x ∈ ℝN, and v(x) → 0 as |x| → +∞, for the infinite case as described by Byeon and Wang. Critical means that 0 ≤ V ∈ C(ℝN) verifies Ƶ = {V = 0} ≠ ∅. Infinite means that Ƶ = {x0} and that, grossly speaking, the potential V decays at an exponential rate as x → x0. For the semiclassical limit, 𝜀 → 0, the infinite case has a characteristic limit problem, (Pinf) : ∆u(x)-P(x)u(x) + |u(x)|p-1u(x) = 0, x ∈ Ω, with u(x) = 0 as x ∈ Ω, where Ω ⊆ ℝN is a smooth bounded strictly star-shaped region related to the potential V. We prove the existence of an infinite number of solutions for both the original and the limit problem via a Ljusternik-Schnirelman scheme for even functionals. Fixed a topological level k we show that vk,𝜀, a solution of (P𝜀), subconverges, up to a scaling, to a corresponding solution of (Pinf ), and that vk,𝜀 exponentially decays out of Ω. Finally, uniform estimates on ∂Ω for scaled solutions of (P𝜀) are obtained.

A Study(VI) on the Development of Charts and Equations Predicting Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Axial Compressive Bearing Capacity Prediction Table Solution or Chart Solution - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(VI) - 지반의 허용압축지지력 산정용 표해 또는 도해 -)

  • Nam, Moon S.;Kwon, Oh-Kyun;Park, Mincheol;Lee, Chang Uk;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.75-95
    • /
    • 2019
  • The numerical analysis on PHC piles socketed into weathered rocks through sandy soil layers was conducted to propose the table solution or the chart solution to obtain the mobilization capacity. The mobilization capacity was determined at the settlement of 5% pile diameter and applied a safety factor of 3.0. In order to utilize the excellent compressive strength of the PHC pile effectively, it is recommended that the allowable bearing capacity of ground would be designed to be more than the long-term allowable compressive pile load. A procedure for determining an allowable pile capacity for PHC piles socketed into weathered rocks through sandy soil layers is given by the sum of the allowable skin friction of the sandy soil layer and the weathered rock layer and the allowable end bearing capacity of the weathered rock layer. The design efficiency of the PHC pile is about 85% at the reasonable design stage in the verification of the newly proposed method. Thus, long-term allowable compressive load (Pall) level of PHC piles can be utilized in the optimal design stage.