Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.12.682

Structure and Elastic Properties of (Nb1-xTax)C, (Nb1-xHfx)C, Ultra-High Temperature Solid Solution Ceramics using the First Principles Calculation  

Kim, Myungjae (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kim, Jiwoo (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kim, Jiwoong (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kim, Kyung-Nam (Department of Advanced Materials Engineering, Kangwon National University)
Publication Information
Korean Journal of Materials Research / v.31, no.12, 2021 , pp. 682-689 More about this Journal
Abstract
NbC, HfC, TaC, and their solid solution ceramics have been identified as the best materials for ultrahigh-temperature ceramics. However, their structural stability and elastic properties are mostly unclear. Thus, we investigated structure and elastic properties of (Nb1-xTax)C and (Nb1-xHfx)C solid solutions via ab initio calculations. Our calculated results show that the stability of (Nb1-xTax)C and (Nb1-xHfx)C increases with the increase of Hf and Ta content, and (Nb1-xHfx)C is more stable than (Nb1-xTax)C at the same content of Hf and Ta. The lattice constants decrease with increasing of Hf and Ta content. (Nb1-xTax)C and (Nb1-xHfx)C carbides are mechanically stable and brittle. Bulk modulus of (Nb1-xTax)C increases with increasing Ta content. In contrast, bulk modulus of (Nb1-xHfx)C decreases with increasing Hf content. Hardness of solid solutions shows the highest values at the (Nb0.25Ta0.75)C and (Nb0.75Hf0.25)C. In particular, (Nb0.75Hf0.25)C shows the highest hardness for the current system. The results indicate that the overall mechanical properties of (Nb1-xHfx)C solid solutions are superior to those of (Nb1-xTax)C solid solutions. Therefore, controlling the Hf and Ta element and content of the (Nb1-xTax)C and (Nb1-xHfx)C Solid solution is crucial for optimizing the material properties.
Keywords
$(Nb_{1-x}Ta_x)C$; $(Nb_{1-x}Hf_x)C$; ultra-high temperature ceramics; elastic modulus; ab initio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Zhang, J. Jiang, Q. Song, T. Pan, Z. Wu, X. Jia and Y. Wen, Ceram. Int., 47, 28050 (2021).   DOI
2 F. Klocke and T. Krieg, CIRP Ann Manuf Technol, 48, 515 (1999).   DOI
3 J. Yang, Y. Wang, J. Huang, W. Wang, Z. Ye, S. Chen and Y. Zhao, J. Alloys Compd., 755, 211 (2018).   DOI
4 S. H. Sheng R. F. Zhang and S. Veprek, Acta Mater., 56, 968 (2008).   DOI
5 J. Furthmller, J. Hafner and G. Kresse, Phys. Rev. B., 50, 15606 (1994).   DOI
6 A. V. D. Walle, Calphad., 33, 266 (2009).   DOI
7 R. M. Jones, AIAA Journal, 15, 16 (1977).   DOI
8 A. Reuss, Z. Angew. Math. Mech., 9, 49 (1929).   DOI
9 Y. Tian, B. Xu and Z. Zhao, Int J Refract Hard Met., 33, 93 (2012).   DOI
10 S. I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett., 101, 055504 (2008).   DOI
11 A. Sevy, D. J. Matthew and M. D. Morse, J. Chem. Phys., 149, 044306 (2018).   DOI
12 J. Sautereau and A. Mocellin, J. Mater. Sci., 9, 761 (1974).   DOI
13 O. Cedillos-Barraza, S. Grasso, N. A. Nasiri, D. D. Jayaseelan, M. J. Reece and W. E. Lee, J. Eur. Ceram. Soc., 36, 1539 (2016).   DOI
14 J. Kim and S. Kang, J. Alloys Compd., 528, 20 (2012).   DOI
15 Y. Liu, Y. Jiang, R. Zhou and J. Feng, J. Alloys Compd., 582, 500 (2014).   DOI
16 H. Yao, L. Ouyang and W.-Y. Ching, J. Am. Ceram. Soc., 90, 3194 (2007).   DOI
17 J. Haines, J. M. Leger and G. Bocquillon, Annual Reviews, 31, 1 (2001).
18 G. N. Greaves, A. L. Greer, R. S. Lakes and T. Rouxel, Nat. Mater., 10, 823 (2011).   DOI
19 S. Vorotilo, K. Sidnov, A. S. Sedegov, M. Abedi, K. Vorotilo and D. O. Moskovskikh, Comput. Mater. Sci., 201, 110869 (2022).   DOI
20 J. Kim, M. Kim, K. M. Roh and I. Kang, J. Am. Ceram. Soc., 102, 6298 (2019).   DOI
21 S. Vorotilo, K. Sidnov, I. Y. Mosyagin, A. V. Khvan, E. A. Levashov, E. I. Patsera and I. A. Abrikosov, J. Alloys Compd., 778, 480 (2019).   DOI
22 T. Cheng, J. Eur. Ceram. Soc., 41, 2335 (2021).   DOI
23 D. V. Vedel, O. N. Grigoriev, P. V. Mazur, A. E. Osipov, Powder Metall. Met. Ceram., 60, 60 (2021).   DOI
24 C. R. Wang, J. M. Yang and W. Hoffman, Mater. Chem. Phys., 74, 272 (2002).   DOI
25 L. Miaja-Avila, B. W. Caplins, A. N. Chiaramonti, P. T. Blanchard, M. D. Brubaker, A. V. Davydov, D. R. Diercks, B. P. Gorman, A. Rishinaramangalam, D. F. Feezell, K. A. Bertness and N. A. Sanford, J. Phys. Chem. C., 125, 2626 (2021).   DOI
26 Y. Tan, Z. Teng, C. Chen, P. Jia, X. Zhou and H. Zhang, Ceram. Int., 47, 16882 (2021).   DOI
27 H. Wang, B. Gao, X. Chen, J. Wang, S. Chen and Y. Gou, Appl Organomet Chem, 27, 166 (2013).   DOI
28 H. Wang, C.-A. Wang, X. Yao and D. Fang, J. Am. Ceram. Soc., 90, 1992 (2007).   DOI
29 V. V. Kurbatkina, E. I. Patsera, P. A. Loginov, T. A. Sviridova, V. V. Klechkovskaya and E. A. Levashov, Ceram. Int., 47, 26205 (2021).   DOI
30 J. Kim and Y. J. Suh, Ceram. Int., 43, 12968 (2017).   DOI
31 S. Grimme, J Comput Chem., 27, 1787 (2006).   DOI
32 A. Matveev, M. Staufer, M. Mayer and N. Rosch, Int J Quantum Chem., 75, 863 (1999).   DOI
33 A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen and Z. K. Liu, Calphad., 42, 13 (2013).   DOI
34 R. Lakes, Science, 235, 1038 (1987).   DOI
35 M. Woydt, S. Huang, J. Vleugels, H. Mohrbacher and E. Cannizza, Int. J. Refract. Met. Hard Mater., 72, 380 (2018).   DOI
36 W. Voigt, Lehrbuch der Kristallphysik (BG Teubner Leipzig und Berlin) 980 S. Reproduced 1966 Spring Fachmedien Wiesbaden GmbH, Leipzi, 980 (1928).
37 R. Hill, Proc. Phys. Soc., 65, 349 (1952).   DOI
38 A. Yoshiasa, M. Tokuda, G. Kitahara, K. Unoki, H. Isobe, A. Nakatsuka and K. Sugiyama, J. Cryst. Growth, 574, 126327 (2021).   DOI
39 F. Mouhat and F.-X. Coudert, Phys. Rev. B., 90, 224104 (2014).   DOI
40 S. A. Ghaffari, M. A. Faghihi-Sani, F. Golestani-Fard and H. Mandal, J. Eur. Ceram. Soc., 33, 1479 (2013).   DOI
41 J. W. D. Connolly and A. R. Williams, Phys. Rev. B, 27, 5169 (1983).   DOI
42 B. Kahl, C. Berndt and A. S. M. Ang, Surf. Coat. Technol., 416, 127128 (2021).   DOI