DOI QR코드

DOI QR Code

Structure and Elastic Properties of (Nb1-xTax)C, (Nb1-xHfx)C, Ultra-High Temperature Solid Solution Ceramics using the First Principles Calculation

제1원리계산을 이용한 (Nb1-xTax)C, (Nb1-xHfx)C 초고온 세라믹 고용체의 구조 및 탄성특성

  • Kim, Myungjae (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Jiwoo (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Jiwoong (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Kyung-Nam (Department of Advanced Materials Engineering, Kangwon National University)
  • 김명재 (숭실대학교 유기신소재파이버공학과) ;
  • 김지우 (숭실대학교 유기신소재파이버공학과) ;
  • 김지웅 (숭실대학교 유기신소재파이버공학과) ;
  • 김경남 (강원대학교 신(기능)소재공학과)
  • Received : 2021.10.29
  • Accepted : 2021.11.23
  • Published : 2021.12.27

Abstract

NbC, HfC, TaC, and their solid solution ceramics have been identified as the best materials for ultrahigh-temperature ceramics. However, their structural stability and elastic properties are mostly unclear. Thus, we investigated structure and elastic properties of (Nb1-xTax)C and (Nb1-xHfx)C solid solutions via ab initio calculations. Our calculated results show that the stability of (Nb1-xTax)C and (Nb1-xHfx)C increases with the increase of Hf and Ta content, and (Nb1-xHfx)C is more stable than (Nb1-xTax)C at the same content of Hf and Ta. The lattice constants decrease with increasing of Hf and Ta content. (Nb1-xTax)C and (Nb1-xHfx)C carbides are mechanically stable and brittle. Bulk modulus of (Nb1-xTax)C increases with increasing Ta content. In contrast, bulk modulus of (Nb1-xHfx)C decreases with increasing Hf content. Hardness of solid solutions shows the highest values at the (Nb0.25Ta0.75)C and (Nb0.75Hf0.25)C. In particular, (Nb0.75Hf0.25)C shows the highest hardness for the current system. The results indicate that the overall mechanical properties of (Nb1-xHfx)C solid solutions are superior to those of (Nb1-xTax)C solid solutions. Therefore, controlling the Hf and Ta element and content of the (Nb1-xTax)C and (Nb1-xHfx)C Solid solution is crucial for optimizing the material properties.

Keywords

Acknowledgement

This work was partly supported by a National Research Foundation (NRF) grant funded by the Korea Government (MSIT) (No. 2020R1F1A1071104).

References

  1. T. Cheng, J. Eur. Ceram. Soc., 41, 2335 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.11.057
  2. D. V. Vedel, O. N. Grigoriev, P. V. Mazur, A. E. Osipov, Powder Metall. Met. Ceram., 60, 60 (2021). https://doi.org/10.1007/s11106-021-00215-3
  3. C. R. Wang, J. M. Yang and W. Hoffman, Mater. Chem. Phys., 74, 272 (2002). https://doi.org/10.1016/S0254-0584(01)00486-2
  4. S. Vorotilo, K. Sidnov, I. Y. Mosyagin, A. V. Khvan, E. A. Levashov, E. I. Patsera and I. A. Abrikosov, J. Alloys Compd., 778, 480 (2019). https://doi.org/10.1016/j.jallcom.2018.11.219
  5. J. Zhang, J. Jiang, Q. Song, T. Pan, Z. Wu, X. Jia and Y. Wen, Ceram. Int., 47, 28050 (2021). https://doi.org/10.1016/j.ceramint.2021.06.167
  6. L. Miaja-Avila, B. W. Caplins, A. N. Chiaramonti, P. T. Blanchard, M. D. Brubaker, A. V. Davydov, D. R. Diercks, B. P. Gorman, A. Rishinaramangalam, D. F. Feezell, K. A. Bertness and N. A. Sanford, J. Phys. Chem. C., 125, 2626 (2021). https://doi.org/10.1021/acs.jpcc.0c08753
  7. B. Kahl, C. Berndt and A. S. M. Ang, Surf. Coat. Technol., 416, 127128 (2021). https://doi.org/10.1016/j.surfcoat.2021.127128
  8. A. Sevy, D. J. Matthew and M. D. Morse, J. Chem. Phys., 149, 044306 (2018). https://doi.org/10.1063/1.5041422
  9. Y. Tan, Z. Teng, C. Chen, P. Jia, X. Zhou and H. Zhang, Ceram. Int., 47, 16882 (2021). https://doi.org/10.1016/j.ceramint.2021.02.264
  10. M. Woydt, S. Huang, J. Vleugels, H. Mohrbacher and E. Cannizza, Int. J. Refract. Met. Hard Mater., 72, 380 (2018). https://doi.org/10.1016/j.ijrmhm.2018.01.009
  11. F. Klocke and T. Krieg, CIRP Ann Manuf Technol, 48, 515 (1999). https://doi.org/10.1016/S0007-8506(07)63231-4
  12. J. Kim, M. Kim, K. M. Roh and I. Kang, J. Am. Ceram. Soc., 102, 6298 (2019). https://doi.org/10.1111/jace.16466
  13. H. Wang, B. Gao, X. Chen, J. Wang, S. Chen and Y. Gou, Appl Organomet Chem, 27, 166 (2013). https://doi.org/10.1002/aoc.2959
  14. J. Yang, Y. Wang, J. Huang, W. Wang, Z. Ye, S. Chen and Y. Zhao, J. Alloys Compd., 755, 211 (2018). https://doi.org/10.1016/j.jallcom.2018.05.009
  15. H. Wang, C.-A. Wang, X. Yao and D. Fang, J. Am. Ceram. Soc., 90, 1992 (2007). https://doi.org/10.1111/j.1551-2916.2007.01665.x
  16. V. V. Kurbatkina, E. I. Patsera, P. A. Loginov, T. A. Sviridova, V. V. Klechkovskaya and E. A. Levashov, Ceram. Int., 47, 26205 (2021). https://doi.org/10.1016/j.ceramint.2021.06.028
  17. S. H. Sheng R. F. Zhang and S. Veprek, Acta Mater., 56, 968 (2008). https://doi.org/10.1016/j.actamat.2007.10.050
  18. H. Yao, L. Ouyang and W.-Y. Ching, J. Am. Ceram. Soc., 90, 3194 (2007). https://doi.org/10.1111/j.1551-2916.2007.01931.x
  19. J. Kim and Y. J. Suh, Ceram. Int., 43, 12968 (2017). https://doi.org/10.1016/j.ceramint.2017.06.195
  20. J. Furthmller, J. Hafner and G. Kresse, Phys. Rev. B., 50, 15606 (1994). https://doi.org/10.1103/physrevb.50.15606
  21. S. Grimme, J Comput Chem., 27, 1787 (2006). https://doi.org/10.1002/jcc.20495
  22. A. Matveev, M. Staufer, M. Mayer and N. Rosch, Int J Quantum Chem., 75, 863 (1999). https://doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<863::AID-QUA51>3.0.CO;2-T
  23. A. V. D. Walle, Calphad., 33, 266 (2009). https://doi.org/10.1016/j.calphad.2008.12.005
  24. A. V. D. Walle, P. Tiwary, M. D. Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen and Z. K. Liu, Calphad., 42, 13 (2013). https://doi.org/10.1016/j.calphad.2013.06.006
  25. J. W. D. Connolly and A. R. Williams, Phys. Rev. B, 27, 5169 (1983). https://doi.org/10.1103/PhysRevB.27.5169
  26. R. M. Jones, AIAA Journal, 15, 16 (1977). https://doi.org/10.2514/3.7297
  27. W. Voigt, Lehrbuch der Kristallphysik (BG Teubner Leipzig und Berlin) 980 S. Reproduced 1966 Spring Fachmedien Wiesbaden GmbH, Leipzi, 980 (1928).
  28. A. Reuss, Z. Angew. Math. Mech., 9, 49 (1929). https://doi.org/10.1002/zamm.19290090104
  29. R. Hill, Proc. Phys. Soc., 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307
  30. G. N. Greaves, A. L. Greer, R. S. Lakes and T. Rouxel, Nat. Mater., 10, 823 (2011). https://doi.org/10.1038/nmat3134
  31. R. Lakes, Science, 235, 1038 (1987). https://doi.org/10.1126/science.235.4792.1038
  32. Y. Tian, B. Xu and Z. Zhao, Int J Refract Hard Met., 33, 93 (2012). https://doi.org/10.1016/j.ijrmhm.2012.02.021
  33. S. I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett., 101, 055504 (2008). https://doi.org/10.1103/PhysRevLett.101.055504
  34. A. Yoshiasa, M. Tokuda, G. Kitahara, K. Unoki, H. Isobe, A. Nakatsuka and K. Sugiyama, J. Cryst. Growth, 574, 126327 (2021). https://doi.org/10.1016/j.jcrysgro.2021.126327
  35. J. Sautereau and A. Mocellin, J. Mater. Sci., 9, 761 (1974). https://doi.org/10.1007/BF00761796
  36. O. Cedillos-Barraza, S. Grasso, N. A. Nasiri, D. D. Jayaseelan, M. J. Reece and W. E. Lee, J. Eur. Ceram. Soc., 36, 1539 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.009
  37. F. Mouhat and F.-X. Coudert, Phys. Rev. B., 90, 224104 (2014). https://doi.org/10.1103/physrevb.90.224104
  38. S. Vorotilo, K. Sidnov, A. S. Sedegov, M. Abedi, K. Vorotilo and D. O. Moskovskikh, Comput. Mater. Sci., 201, 110869 (2022). https://doi.org/10.1016/j.commatsci.2021.110869
  39. J. Kim and S. Kang, J. Alloys Compd., 528, 20 (2012). https://doi.org/10.1016/j.jallcom.2012.02.124
  40. S. A. Ghaffari, M. A. Faghihi-Sani, F. Golestani-Fard and H. Mandal, J. Eur. Ceram. Soc., 33, 1479 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.01.017
  41. Y. Liu, Y. Jiang, R. Zhou and J. Feng, J. Alloys Compd., 582, 500 (2014). https://doi.org/10.1016/j.jallcom.2013.08.045
  42. J. Haines, J. M. Leger and G. Bocquillon, Annual Reviews, 31, 1 (2001).