• Title/Summary/Keyword: sub-solution

Search Result 2,560, Processing Time 0.029 seconds

Characteristics of Micro EDM using Wire Electrical Discharge Grinding for Al2O3/CNTs Hybrid Materials (Al2O3/CNTs 하이브리드소재의 와이어 방전연삭을 이용한 마이크로 방전가공 특성)

  • Tak, Hyun-Seok;Kim, Jong-Hun;Lim, Han-Suk;Lee, Choon-Tae;Jeong, Young-Keun;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • Electrical discharge machining (EDM) is an attractive machining technique but it requires electrically conductive ceramic materials. In this study, Alumina matrix composites reinforced with CNTs were fabricated through CNT purification, mixing, compaction and spark plasma sintering (SPS) processes. $Al_2O_3$ nanocomposites with the different CNT concentrations were synthesized. The mechanical and electrical characteristics of $Al_2O_3$/CNTs composites were examined in order to apply the materials to the EDM process. In addition, micro-EDM using wire electrical discharge grinding (WEDG) was conducted under the various EDM parameters to investigate the machining characteristics of machined hole by Field Emission Scanning Electron Microscope (FE-SEM). The results show that $Al_2O_3$/CNTs 10%Vol. was more suitable than the other materials because high conductivity and large discharge energy caused violent sparks resulting in bad machining accuracy and surface quality.

Low-Temperature Performance of Solution-Based Transparent Conducting Oxides Depending on Nanorod Composite for Sn-Doped In2O3 Nanoinks (Sn-Doped In2O3 나노잉크를 위한 나노로드의 복합화에 따른 용액기반 투명 전도성 산화물의 저온성능)

  • Bae, Ju-Won;Koo, Bon-Ryul;Lee, Tae-Kun;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.149-154
    • /
    • 2017
  • Transparent conducting oxides (TCOs) were fabricated using solution-based ITO (Sn-doped $In_2O_3$) nanoinks with nanorods at an annealing temperature of $200^{\circ}C$. In order to optimize their transparent conducting performance, ITO nanoinks were composed of ITO nanoparticles alone and the weight ratios of the nanorods to nanoparticles in the ITO nanoinks were adjusted to 0.1, 0.2, and 0.5. As a result, compared to the other TCOs, the ITO TCOs formed by the ITO nanoinks with weight ratio of 0.1 were found to exhibit outstanding transparent conducting performance in terms of sheet resistance (${\sim}102.3{\Omega}/square$) and optical transmittance (~80.2 %) at 550 nm; these excellent properties are due to the enhanced Hall mobility induced by the interconnection of the composite nanorods with the (440) planes of the short lattice distance in the TCOs, in which the presence of the nanorods can serve as a conducting pathway for electrons. Therefore, this resulting material can be proposed as a potential candidate for solution-based TCOs for use in optoelectronic devices requiring large-scale and low-cost processes.

CeO2-Promoted Highly Active Catalyst, NiSO4/CeO2-ZrO2 for Ethylene Dimerization

  • Pae, Young-Il;Shin, Dong-Cheol;Sohn, Jong-Rack
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.1989-1996
    • /
    • 2006
  • The $NiSO_4/CeO_2-ZrO_2 $catalysts containing different nickel sulfate and $CeO_2$ contents were prepared by the impregnation method, where support, $CeO_2-ZrO_2$was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and cerium nitrate solution followed by adding an aqueous ammonia solution. No diffraction line of nickel sulfate was observed up to 20 wt %, indicating good dispersion of nickel sulfate on the surface of $CeO_2-ZrO_2$. The addition of nickel sulfate (or $CeO_2$) to $ZrO_2$ shifted the phase transition of $ZrO_2$ from amorphous to tetragonal to higher temperatures because of the interaction between nickel sulfate (or $CeO_2$) and $ZrO_2$. A catalyst (10-$NiSO_4/1-CeO_2-ZrO_2$) containing 10 wt % $NiSO_4$ and 1 mole % $CeO_2$, and calcined at $600{^{\circ}C}$ exhibited a maximum catalytic activity for ethylene dimerization. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The role of $CeO_2$was to form a thermally stable solid solution with zirconia and consequently to give high surface area, thermal stability and acidity of the sample.

Effects of Solubility of SO2 Gas on Continuous Bunsen Reaction using HIx Solution (HIx 용액을 이용한 연속식 분젠 반응에 미치는 SO2용해도의 영향)

  • KIM, JONGSEOK;PARK, CHUSIK;KANG, KYOUNGSOO;JEONG, SEONGUK;CHO, WON CHUL;KIM, YOUNG HO;BAE, KI KWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • The Sulfur-Iodine thermochemical hydrogen production process (SI process) consists of the Bunsen reaction section, the $H_2SO_4$ decomposition section, and the HI decomposition section. The $HI_x$ solution ($I_2-HI-H_2O$) could be recycled to Bunsen reaction section from the HI decomposition section in the operation of the integrated SI process. The phase separation characteristic of the Bunsen reaction using the $HI_x$ solution was similar to that of $I_2-H_2O-SO_2$ system. On the other hands, the amount of produced $H_2SO_4$ phase was small. To investigate the effects of $SO_2$ solubility on Bunsen reaction, the continuous Bunsen reaction was performed at variation of the amounts of $SO_2$ gas. Also, it was carried out to make sure of the effects of partial pressure of $SO_2$ in the condition of 3bar of $SO_2-O_2$ atmosphere. As the results, the characteristic of Bunsen reaction was improved with increasing the amounts and solubility of $SO_2$ gas. The concentration of Bunsen products was changed by reverse Bunsen reaction and evaporation of HI after 12 h.

Effect of Ethanol as a Dispersant and pH on the Particle Size and Phase Formation in the Synthesis of K+-β"-Al2O3 by Solution State Reaction (액상반응에 의한 K+-β"-Al2O3 합성시 분산첨가제 에탄올과 pH가 입도 및 상형성에 미치는 영향)

  • Cho, Do-Hyung;Kim, Woo-Sung;Shin, Jae-Ho;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$ in the $K_2O-Li_2O-Al_2O_3$ ternary system was synthesized using aluminum nitrate solution as a starting material. For the synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$, raw materials with chemical composition of $0.84K_2O{\cdot}0.082Li_2O{\cdot}5.2Al_2O_3$ were mixed in solution state. The effects of dispersant and solution-pH were investigated in minimizing the particle size and on the synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$. Ethanol was used for a dispersant, and $NH_4OH$ solution and nitric acid were added for pH adjustment. The solution pH was increased from 1.0 to 7.5 by 0.5 increments. Each sample was calcined at $1200^{\circ}C$ for 2 h and characterized with X-ray diffraction and particle size analyzer. The pH of solution significantly effected both particle size and phase formation, while the addition of ethanol only effected particle size. The synthesis of pure $K^+-{\beta}^{{\prime}{\prime}}-Al_2O_3$ was favored by addition of nitric acid (for pH control).

Effect of magnesium sulphate solution on compressive strength and sorptivity of blended concrete

  • Jena, Trilochan;Panda, Kishor C.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.267-278
    • /
    • 2020
  • This paper reports on the result of an experimental investigation carried out to study the compressive strength and sorptivity properties of blended cement concrete exposed to 5% and 10% MgSO4 solution using fly ash (FA) and silpozz. Usually in sulphate environment the minimum grade of concrete is M30 and the mix design is done for target mean strength of 39 MPa. Silpozz is manufactured by burning of agro-waste rice husk in designed furnace in between 600° to 700℃ which is one of the main agricultural residues obtained from the outer covering of rice grains during the milling process. There are four mix series taken with control mix. The control mix made 0% replacement of FA and silpozz with Ordinary Portland Cement (OPC). The first mix series made 0% FA and 10-30% replacement of silpozz with OPC. The second mix series made with 10% FA and 10-40% replacement of silpozz with OPC. The third mix series made 20% FA and 10-30% replacement of silpozz with OPC and the fourth mix series made 30% FA and 10-20% silpozz replaced with OPC. The samples (cubes) are prepared and cured in normal water and 5% and 10% MgSO4 solution for 7, 28 and 90 days. The studied parameters are compressive strength and strength deterioration factor (SDF) for 7, 28 and 90 days. The water absorption and sorptivity tests have been done after 28 days of normal water and magnesium sulphate solution curing. The investigation reflects that the blended cement concrete incorporating FA and silpozz showing better resistance against MgSO4 solution when compared to normal water curing (NWC) samples.

Formation Behavior and Properties of PEO Films on AZ91 Mg Alloy in 0.1 M NaOH + 0.05 M NaF Solution Containing Various Na2SiO3 Concentrations (AZ91 마그네슘 합금의 플라즈마 전해산화 피막 형성 및 물성에 미치는 0.1 M NaOH + 0.05 M NaF 용액 중 Na2SiO3 농도의 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.59-66
    • /
    • 2020
  • Effects of Na2SiO3 concentration added into 0.1 M NaOH + 0.05 M NaF solution on the formation behavior and properties of PEO films on AZ91 Mg alloy were investigated under 1200 Hz of alternating current (AC) by voltage-time curves, in-situ observation of arc generation behavior and measurements of film thickness, surface roughness and micro vickers hardness. In the absence of Na2SiO3 in the 0.1 M NaOH + 0.05 M NaF solution, about 4 ㎛ thick PEO film was formed within 1 min and then PEO film did not grow but white spots were formed by local burning. Addition of Na2SiO3 up to 0.2 M caused more increased formation voltage and growth of PEO film with uniform generation of arcs. Addition of Na2SiO3 from 0.2 M to 0.4 M showed nearly the same voltage-time behavior and uniform arc generation. Addition of Na2SiO3 more than 0.5 M resulted in a decrease of formation voltage and non-uniform arc generation due to local burning. PEO film growth rate increased with increasing added Na2SiO3 concentration but maximum PEO film thickness was limited by local burning if added Na2SiO3 concentration is higher than 0.5 M. Surface roughness of PEO film increased with increasing added Na2SiO3 concentration and appeared to be proportional to the PEO film thickness. PEO film hardness increased with increasing added Na2SiO3 concentration and reached a steady-state value of about 930 HV at more than 0.5 M of added Na2SiO3 concentration.

The Effect of SO2-O2 Mixture Gas on Phase Separation Composition of Bunsen Reaction with HIx solution (HIx 용액을 이용한 분젠 반응에서 상 분리 조성에 미치는 SO2-O2 혼합물 기체의 영향)

  • Han, Sangjin;Kim, Hyosub;Ahn, Byungtae;Kim, Youngho;Park, Chusik;Bae, Kikwang;Lee, Jonggyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.421-428
    • /
    • 2012
  • The Sulfur-Iodine (SI) thermochemical hydrogen production process is one of the most promising thermochemical water splitting technologies. In the integrated operation of the SI process, the $O_2$ produced from a $H_2SO_4$ decomposition section could be supplied directly to the Bunsen reaction section without preliminary separation. A $HI_x$ ($I_2+HI+H_2O$) solution could be also provided as the reactants in a Bunsen reaction section, since the sole separation of $I_2$ in a $HI_x$ solution recycled from a HI decomposition section was very difficult. Therefore, the Bunsen reaction using $SO_2-O_2$ mixture gases in the presence of the $HI_x$ solution was carried out to identify the effect of $O_2$. The amount of $I_2$ unreacted under the feed of $SO_2-O_2$ mixture gases was little higher than that under the feed of $SO_2$ gas only, and the amount of HI produced was relatively decreased. The $O_2$ in $SO_2-O_2$ mixture gases also played a role to decrease the amount of a impurity in $HI_x$ phase by only striping effect, while that in $H_2SO_4$ phase was hardly affected.

Selective Chemical Wet Etching of Si0.8Ge0.2/Si Multilayer

  • Kil, Yeon-Ho;Yang, Jong-Han;Kang, Sukil;Jeong, Tae Soo;Kim, Taek Sung;Shim, Kyu-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.668-675
    • /
    • 2013
  • We investigate the effect of the ageing time and etching time on the etching rate of SiGe mixed etching solution, namely 1 vp HF (6%), 2 vp $H_2O_2$ (30%) and 3 vp $CH_3COOH$ (99.8%). For this etching solution, we found that the etch rate of SiGe layer is saturated after the ageing time of 72 hours, and the selectivity of $Si_{0.8}Ge_{0.2}$ layer and Si layer is 20:1 at ageing time of 72 hours. The collapse was appeared at the etching time of 9min with etching solution of after saturation ageing time.

Application of a. Strip Ion-Selective Electrode Sensor for Hydroponic Nutrient Solution Analysis - NO3 Analysis - (양액의 영양분 분석을 위한 Strip형 이온선택성전극 센서 의 응용 -NO3 이온 분석 -)

  • 김기영
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.335-342
    • /
    • 2003
  • A simple disposable thick-film potentiometric strip has been developed and evaluated for hydroponics application. The strip consisted of low ion-selective electrodes (ISE) fabricated by screen-printing technology. The electrochemical responses of ion sensors for nitrate, ammonium, potassium, and magnesium were measured with specially designed 16-channel low voltage signal transducers. The analytical characteristics of the sensors were comparable with those of conventional ISE sensors. The thick-film sensors exhibit linear relationships over five concentration decades. The concentration of N $O_3$ - ion in standard solution can be determined by direct potentiometric measurements without any conditioning before measurements. However, measurement of $K^{+}$, N $H_4$$^{+}$, and $Mg^{2+}$ ionic concentrations in nutrient solutions seems not feasible.