• 제목/요약/키워드: sub-alkaline

검색결과 261건 처리시간 0.022초

Electrochemical Oxygen Evolution Reaction on NixFe3-xO4 (0 ≤ x ≤ 1.0) in Alkaline Medium at 25℃

  • Pankaj, Chauhan;Basant, Lal
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.497-503
    • /
    • 2022
  • Spinel ferrites (NixFe3-xO4; x = 0.25, 0.5, 0.75 and 1.0) have been prepared at 550℃ by egg white auto-combustion route using egg white at 550℃ and characterized by physicochemical (TGA, IR, XRD, and SEM) and electrochemical (CV and Tafel polarization) techniques. The presence of characteristic vibration peaks in FT-IR and reflection planes in XRD spectra confirmed the formation of spinel ferrites. The prepared oxides were transformed into oxide film on glassy carbon electrodes by coating oxide powder ink using the nafion solution and investigated their electrocatalytic performance for OER in an alkaline solution. The cyclic voltammograms of the oxide electrode did not show any redox peaks in oxygen overpotential regions. The iR-free Tafel polarization curves exhibited two Tafel slopes (b1 = 59-90 mV decade-1 and b2 = 92-124 mV decade-1) in lower and higher over potential regions, respectively. Ni-substitution in oxide matrix significantly improved the electrocatalytic activity for oxygen evolution reaction. Based on the current density for OER, the 0.75 mol Ni-substituted oxide electrode was found to be the most active electrode among the prepared oxides and showed the highest value of apparent current density (~9 mA cm-2 at 0.85 V) and lowest Tafel slope (59 mV decade-1). The OER on oxide electrodes occurred via the formation of chemisorbed intermediate on the active sites of the oxide electrode and follow the second-order mechanism.

Corrosive Wear of Alloy 690 Tubes in Alkaline Water

  • Hong, Seung Mo;Jang, Changheui;Kim, In Sup
    • Corrosion Science and Technology
    • /
    • 제8권3호
    • /
    • pp.126-131
    • /
    • 2009
  • The interaction between wear and corrosion can significantly increase total material losses in water chemistry environment. The corrosive wear tests of a PWR steam generator tube material (Alloy 690) against the anti vibration bar material (409 SS) were performed at room temperature. The tests were performed in alkaline water chemistry conditions. NaOH solution was selected for test condition to investigate the corrosive wear effect of steam generator tube material in alkaline pH condition without other factors. The flow induced vibration can caused tube damage and the corrosion can be occurred by water chemistry. The test results showed that, in the alkaline solution at pH 13.9, the corrosion current density was increased about ten times than that in the distilled water. And wear rate at pH 13.9 was increased about ten times from that at neutral condition. However, the wear rate was decreased with time. The decrease would be attributed to the change in roughness of specimen or sub-layer of the worn surface with time. From microstructure observation, severe abrasive shape and several wear debris were found. From those results, it could infer that the oxide film on Alloy 690 changed to easily breakable one in the alkaline water, and then abrasion with corrosion became the main wear mechanism.

F급 플라이 애쉬-모르타르의 강도발현에 대한 NaOH과 Na2SiO3·9H2O 첨가의 영향 (Effects of NaOH and Na2SiO3·9H2O Addition on Strength Development of Class F Fly Ash-Mortar)

  • 박상숙;강화영;한상호;강희복
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권4호
    • /
    • pp.261-269
    • /
    • 2005
  • 본 연구의 목적은 칼슘 함량이 낮은 플라이 애쉬를 이용하여 포틀랜트시멘트를 대신할 수 있는 알칼리활성 플라이 애쉬-시멘트를 제조하는데 있다. 플라이 애쉬의 활성화는 다양한 수산화나트륨 농도와 온도 그리고 liquid/fly ash 혼합비율에서 수행하였다. 좀 더 높은 압축강도를 가진 경화체를 얻기 위하여 규산나트륨을 알칼리 용액에 첨가하였다. 강도발현의 관점에서 볼 때, liquid/fly ash의 혼합비율과 활성화제 농도 그리고 온도는 항상 중요한 인자로 작용하였다. $NaOH(210g)+Na_2SiO_3{\cdot}9H_2O(30g)+H_2O=1L$로 구성된 알칼리 활성용액은 $50^{\circ}C$에서 칼슘 함량이 낮은 플라이 애쉬의 알칼리활성 효과를 가장 높게 나타냈다. 알칼리활성화된 플라이 애쉬는 주로 quartz와 mullite 그리고 무정형의 aluminosilicate로 구성되었음을 SEM과 XRD 분석결과에서 보여주었다.

알칼리용액에서 La0.8Sr0.2MnO3 페롭스카이트 촉매의 산소환원 및 발생반응에서 도전재의 영향 (Effect of Conductive Additives in La0.8Sr0.2MnO3 Perovskite Electrodes for Oxygen Reduction and Evolution in Alkaline Solution)

  • 심중표;로페즈 카린;양진현;선호정;박경세;엄승욱;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제27권3호
    • /
    • pp.276-282
    • /
    • 2016
  • The effects of conductive additives in a $La_{0.8}Sr_{0.2}MnO_3$ perovskite bifunctional electrode for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated in an alkaline solution. Highly porous carbon black (CB) and Ni powder were added to the bifunctional electrodes as conductive additives. The surface morphologies of electrodes containing CB and Ni were observed by scanning electron microscopy (SEM). The current densities for both ORR and OER were changed by the addition of CB. The conductive additive changed physical properties of bifunctional electrodes such as the sheet conductance, gas permeability and contact angle. It was observed that the air permeability of electrode was most effective to enhance the currents for ORR and OER.

Synthesis of Titanate Nanotubes Via A Hydrothermal Method and Their Photocatalytic Activities

  • Kim, Ye Eun;Byun, Mi Yeon;Lee, Kwan-Young;Lee, Man Sig
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.147-154
    • /
    • 2022
  • Titanate nanotubes (TNTs) were synthesized via alkaline hydrothermal treatment using commercial TiO2 nanoparticles (P25). The TNTs were prepared at various TiO2/NaOH ratios, hydrothermal temperatures, and hydrothermal times. The synthesized catalysts were characterized by X-ray diffraction, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, field-emission transmission electron microscopy, and ultraviolet-visible spectroscopy. TNTs were generated upon a decrease in the TiO2/NaOH ratio due to the dissolution of TiO2 in the alkaline solution and the generation of new Ti-O-Ti bonds to form titanate nanoplates and nanotubes. The hydrothermal treatment temperature and time were important factors for promoting the nucleation and growth of TNTs. The TNT catalyst with the largest surface area (389.32 m2 g-1) was obtained with a TiO2/NaOH ratio of 0.25, a hydrothermal treatment temperature of 130 ℃, and a hydrothermal treatment time of 36 h. Additionally, we investigated the photocatalytic activity of methyl violet 2B (MV) over the TNT catalysts under UV irradiation and found that the degradation efficiencies of the TNTs were higher than that of P25. Among the TNT catalysts, the TNT catalyst that was hydrothermally synthesized for 36 h (TNT 36 h) exhibited a 96.9% degradation efficiency and a degradation rate constant that was 4.8 times higher than P25 due to its large surface area, which allowed for more contact between the MV molecules and TNT surfaces and facilitated rapid electron transfer. Finally, these results were correlated with the specific surface area.

연속흐름형 Jet loop reactor에서 CO2를 이용한 알칼리폐수의 중화 (Neutralization of Alkaline Wastewater with CO2 in a Continuous Flow Jet Loop Reactor)

  • 강대엽;김미란;임준혁;이태윤;이제근
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.101-107
    • /
    • 2016
  • 본 연구에서는 $CO_2$를 이용한 알칼리폐수의 중화처리 시 jet loop reactor의 적용가능성을 검토하고자 하였다. 이를 위해 연속식 jet loop reactor에서 pH=10.1인 알칼리 폐수의 유입유량($Q_{L,in}=0.9{\sim}6.6L/min$)과 유입가스유량($Q_{G,in}=1{\sim}6L/min$)을 변화시키면서 유출수의 pH 변화 및 $CO_2$ 제거특성을 살펴보았다. 중화반응 후 유출수의 pH는 $Q_{L,in}/Q_{G,in}$ 비가 1.1일 때는 $Q_{G,in}$$Q_{L,in}$이 증가하여도 pH가 7.2 정도로 일정하게 유지되었다. 그러나 $Q_{L,in}/Q_{G,in}$ 비가 1.1 이상에서는 $Q_{L,in}/Q_{G,in}$ 비가 증가할수록 $CO_2$ 제거효율 및 배출수의 pH가 증가하는 경향을 보였다. 본 연구범위에서 얻어진 최대 $CO_2$ 제거효율은 98.06%로 $Q_{G,in}=2L/min$, $Q_{L,in}=4L/min$인 조건이었으며, 이때의 유출수 pH는 8.43 이었다.

Analytical Study of Polarization Spectroscopy for the Jg=0 → Je=1 Transition

  • Noh, Heung-Ryoul
    • Journal of the Optical Society of Korea
    • /
    • 제17권3호
    • /
    • pp.279-282
    • /
    • 2013
  • This work presents a theoretical study on the analytical calculation of the lineshape of polarization spectroscopy (PS) for the transition line $5s^2\;^1S_0{\rightarrow}5s5p\;^1P_1$ of $^{88}Sr$. From the obtained analytical form of the PS spectrum, we were able to identify how the saturation affected the lineshape of the PS spectrum. The results obtained will be useful for polarization spectroscopy experiments using the alkaline-earth atoms such as Sr or Yb.

전기아연도금용 강판의 상온 탈지 조건 연구 (Study on the Room Temperature Degreasing Conditions of Steel Sheet for Electrogalvanizing)

  • 박태연;김채원;양수미;홍희준;최인철
    • 열처리공학회지
    • /
    • 제37권1호
    • /
    • pp.16-22
    • /
    • 2024
  • The conventional degreasing process involves removing oil and contaminants at temperatures above 80℃, resulting in excessive energy consumption, increased process costs, and environmental issues. In this study, we aimed to find the optimal degreasing conditions for the pre-treatment process of electro-galvanizing cold-rolled steel sheets, conducted efficiently at room temperature without the need for a separate heating device. To achieve this, we developed a room temperature degreasing solution and a brush-type degreasing tool, aiming to reduce energy consumption and normalize the decrease in degreasing efficiency caused by temperature reduction. Alkaline degreasing solution were prepared using KOH, SiO2, NaOH, Na2CO3, and Sodium Lauryl Sulfate, with KOH and NaOH as the main components. To enhance the degreasing performance at room temperature, we manufactured additives including sodium oleate, sodium stearate, sodium palmitate, sodium lauryl sulfate, ammonium lauryl sulfate, silicone emulsion, and EDTA-Na. Room temperature additives were added to the alkaline degreasing solution in quantities ranging from 0.1 to 20 wt.%, and the uniformity of degreasing and the adhesion of the galvanized layer were evaluated through Dyne Test, T-bending Test, OM, SEM, and EDS analyses. The results indicated that the optimal degreasing solution composition consisted of NaOH (30 g/L), Na2CO3 (30 g/L), SLS (6 g/L), and room temperature additives (≤1 wt%).

Evaluation of Protective Effects of Houttuynia cordata on H2O2-Induced Oxidative DNA Damage Using an Alkaline Comet Assay in Human HepG2 Cells

  • Hah, Dae-Sik;Kim, Chung-Hui;Ryu, Jae-Doo;Kim, Eui-Kyung;Kim, Jong-Shu
    • Toxicological Research
    • /
    • 제23권1호
    • /
    • pp.25-31
    • /
    • 2007
  • To evaluate the protective effect of Houttuynia cordata on hydrogen peroxide-induced oxidative DNA damage in HepG2 cell line, we used an alkaline single-cell gel electrophoresis (SCGE; comet assay). The DNA damage was analyzed by tail moment (TM) and tail length (TL), which used markers of DNA strand breaks in SCGE. The $100{\mu}g/ml$ of methanolic extract of Houttuynia cordata root showed significant protective effects (p < 0.01) against hydrogen peroxide-induced DNA damage in HepG2 cells and increased cell viability against hydrogen peroxide. The results of this study indicate that Houttuynia cordata root methanol extract acts as a potential antioxidant, and exhibits potential anticancer properties, which may provide a clue to find applications in new pharmaceuticals for oxidative stability.