• Title/Summary/Keyword: styrene butadiene rubber (SBR)

Search Result 116, Processing Time 0.027 seconds

Functionalized Emulsion Styrene-Butadiene Rubber Containing Diethylaminoethyl Methacrylate for Silica Filled Compounds

  • Park, Jinwoo;Kim, Kihyun;Lim, Seok-Hwan;Hong, Youngkun;Paik, Hyun-jong;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • In this study, diethylaminoethyl methacrylate-styrene-butadiene terpolymer (DEAEMA-SBR), in which diethylaminoethyl methacrylate (DEAEMA) was introduced to the SBR molecule as a third monomer, was synthesized by cold emulsion polymerization. It is expected that amine group introduced to a rubber molecule would improve dispersion of silica by the formation of hydrogen bond (or ionic coupling) between the amine group and silanol groups of silica surface. The chemical structure of DEAEMA-SBR was analyzed using proton nuclear magnetic resonance spectroscopy (H-NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Then, various properties of DEAEMA-SBR/silica composite such as crosslink density, bound rubber content, abrasion resistance, and mechanical properties were evaluated. As a result, bound rubber content and crosslink density of DEAEMA-SBR/silica compound were higher than those of the SBR 1721 composite. Abrasion resistance and moduli at 300% elongation of the DEAEMA-SBR/silica composite were better than those of SBR 1721 composite due to the high bound rubber content and crosslink density. These results are attributed to high affinity between DEAEMA-SBR and silica. The proposed study suggests that DEAEMA-SBR can help to improve mechanical properties and abrasion resistance of the tire tread part.

Effect of Coupling Agent, Methylene Diisocyanate, in the Blending of Poly(methyl methacrylate)-Modified Starch and Styrene-Butadiene Rubber (폴리(메틸 메타크릴레이트)-개질된 전분과 스티렌-부타디엔 고무의 혼합에서 커플링제 메틸렌 디이소시아네이트의 효과)

  • Li, Mei-Chun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.117-126
    • /
    • 2014
  • Methylene diisocyanate (MDI) was investigated as a novel interfacial modifier to enhance the performances of poly(methyl methacrylate)-modified starch/styrene-butadiene rubber (PMMA-modified starch/SBR) composites. Owing to the formation urethane linkage on one side and ${\pi}-{\pi}$ adhesion on the other side, MDI acted as an intermediated linkage role in the PMMA-modified starch/SBR interfaces, which was evidenced by the morphological, mechanical, dynamic mechanical and thermal decomposition studies. As a result, the presence of MDI significantly improved the mechanical properties and thermal stability of PMMA-modified starch/SBR composites. In addition, the effect of starch concentration on the various performances of the resulted MDI/PMMA-modified starch/SBR composites, such as morphology, vulcanization characteristics, mechanical properties, toluene swelling behavior, and thermal stability were investigated and discussed in detail. The obtained MDI/PMMA-modified starch/SBR composites exhibited superior mechanical properties to carbon black/SBR (CB/SBR) composites, demonstrating the potential use of the renewable starch as a substitute for CB in the rubber compounds.

Studies on the Ozone Resistance and Physical Properties of SBR/EPDM Blend Compound due to EPDM Content Variation (EPDM 함량 변화에 따른 SBR/EPDM 블렌드 혼합물의 내오존성과 물리적 성질에 관한 연구)

  • Ha, Ki-Ryong;Lee, Jong-Cheol;Kim, Tae-Geun;Hwang, Ki-Seob
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.8-17
    • /
    • 2008
  • Styrene-butadiene rubber(SBR) has good abrasion resistance, miscibility, and anti-vibration property. however, it is easily damaged by ozone and swelled by hydrocarbon fluids because of unsaturation part in main chain, that causes loss of visco-elasticity and reduction of product's life cycle. Therefore, object of this study is to cope with this problem. SBR is blended with various proportion of ethylene-propylene-diene terpolymer(EPDM), which has excellent ozone and oxygen resistance, to improve physical properties and ozone resistance, and diverse analytical techniques are used to measure morphology, glass transition temperature$(T_g)$, ozone-resistance, degradation temperature, static spring constant, hardness for considering a suitability for anti-vibration industrial product. We found that the blend consisting of SBR 70% and EPDM 30% showed no crack after ozone test and good miscibility between SBR and EPDM from this study.

Properties of Silica-SBR Compounds Using Cellulose Dispersant Applicable to Tire Tread Rubber

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.176-183
    • /
    • 2020
  • Silica-styrene butadiene rubber (Silica-SBR) compounds have been used in the preparation of tire treads. The silica dispersibility of silica-SBR compounds is related to the processability, mechanical properties, and wear resistance of tires. Recently, in order to improve the silica dispersibility of the silica-SBR compounds, the wet masterbatch (WMB) process was introduced, which is a method of mixing rubber in the water phase. We aimed to improve the silica dispersibility of the silica-SBR compounds by preparing a silica dispersant applicable to the WMB process. For this purpose, cellulose, 2-hydroxyethyl cellulose, and cellulose acetate were employed as a silica dispersant. The silica dispersibility of the compounds was measured by a moving die rheometer. Improvement in the processability of silica-SBR compounds was evaluated by the Mooney viscometer. The wear resistance of silica-SBR compounds using a cellulose dispersant was improved by up to 29%.

The Rolling-Sliding Friction of Rubber and the Behavior of Contact Area

  • Uchiyama, Y.;Monden, N.;Miyao, T.;Iwai, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.189-190
    • /
    • 2002
  • Rolling-sliding friction was investigated for three SBR (styrene-butadiene rubber) specimens including silica-filled, HAF carbon black-filled, and SAF carbon black-filled SBR. When a rubber wheel was rolled against a glass disk, the coefficient of friction varied with the slip ratios. The coefficient of friction for the silica-tilled SBR showed the highest value of the rubber specimens examined under various slip ratios. The contact areas of silica-filled SBR were larger than those of the carbon black-filled SBRs, as indicated the modulus of the silica-filled SBR showing the lowest value. The contact area during rolling-sliding friction was always smaller than those during the static contact. The friction force at the unit contact area for the silica-filled SBR under braking and driving was higher than those of carbon black-filled SBRs.

  • PDF

Effects of Intermeshing Rotor for Dispersion of Silica Agglomerates in SBR/BR Compound (Intermeshing Rotor의 구조가 SBR/BR 합성고무 복합소재의 실리카 분산에 미치는 영향의 비교)

  • Kim, Sung-Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.637-642
    • /
    • 2012
  • The effects of mixing geometry (intermeshing vs. tangential rotor) for the dispersion and distribution of silica agglomerates in SBR/BR compound were investigated. Silica dispersion and distribution were found to be better with the intermeshing rotor compared to the tangential rotor. It was concluded that the intermeshing rotor compared to the tangential rotor delivered a higher shear stress due to interlocked rotor geometry to silica agglomerates leading to better dispersity and distribution of silica in the agglomerates.

Effect of recycled glass powder on asphalt concrete modification

  • Bilondi, M. Pourabbas;Marandi, S.M.;Ghasemi, F.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.373-385
    • /
    • 2016
  • During recent years researchers performed large effort to increase the service life and asphalt stability of the roads against traffic loads and weather conditions. Investigations carried out in various aspects such as changes in gradation, addition of various additives, changes in asphalt textures and etc. The objective of this research is to evaluate the advantages of adding recycled glass powder (RGP), Crumb Rubber (CR), styrene-butadiene rubber (SBR) and styrene butadiene styrene (SBS) to base bitumen with grade of 60/70 for modification of asphalt concrete. Initial studies conducted for determining the physical properties of bitumen and modifiers. A series of asphalt concrete samples made using various combinations of RGP, CR, SBR, SBS and base bitumen. All samples tested using Indirect Tensile Strength (ITS), Indirect Tensile Strength Modulus (ITSM) and Marshall Stability Tests. The new data compared with the results of control samples. The results showed that replacing RGP with known polymers improved ITS and ITSM results considerably. Also the Marshall Stability of modified mixtures using RGP is more than what is found for the base blend. Ultimately, the new RGP modifier had a huge impact on pavement performance and results in high flexibility which can be concluded as high service life for the new modified asphalt concrete.

SBR/Organoclay Nanocomposites for the Application on Tire Tread Compounds

  • Kim, Wook-Soo;Lee, Dong-Hyun;Kim, Il-Jin;Son, Min-Jin;Kim, Won-Ho;Cho, Seong-Gyu
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.776-784
    • /
    • 2009
  • N,N-dimethyldodecylamine (tertiary amine)-modified MMT (DDA-MMT) was prepared as an organically modified layered silicate (OLS), after which styrene-butadiene rubber (SBR) nanocomposites reinforced with the OLS were manufactured via the latex method. The layer distance of the OLS and the morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). By increasing the amount of N,N-dimethyldodecylamine (DDA) up to 2.5 g, the maximum values of torque, tensile strength and wear resistance of the SBR nanocomposites were increased due to the increased dispersion of the silicate layers in the rubber matrix and the increased crosslinking of the SBR nanocomposites by DDA itself. When SBR nanocomposites were manufactured by using the ternary filler system (carbon black/silica/OLS) to improve their dynamic properties as a tire tread compound, the tan $\delta$(at $0^{\circ}C$ and $60^{\circ}C$) property of the compounds was improved by using metal stearates instead of stearic acid. The mechanical properties and wear resistance were increased by direct substitution of calcium stearate for stearic acid because the filler-rubber interaction was increased by the strong ionic effect between the calcium cation and silicates with anionic surface. However, as the amount of calcium stearate was further increased above 0.5 phr, the mechanical properties and wear resistance were degraded due to the lubrication effect of the excessive amount of calcium stearate. Consequently, the SBR/organoclay nanocomposites that used carbon black, silica, and organoclay as their ternary filler system showed excellent dynamic properties, mechanical properties and wear resistance as a tire tread compound for passenger cars when 0.5 phr of calcium stearate was substituted for the conventionally used stearic acid.

Improvement of Properties of Silica-Filled SBR Compounds Using NBR: Influence of Separate Load of SBR and NBR (NBR를 이용한 실리카로 보강된 SBR 배합물의 특성 향상 : SBR과 NBR의 분리 첨가 배합의 영향)

  • Choi, Sung-Seen;Kim, Beom-Tae
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.29-36
    • /
    • 2005
  • Mixing condition and procedure affect properties or a filled rubber compound such as filler dispersion, viscosity, and bound rubber formation. Influence of separate load of styrene-butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR) on properties or silica-filled SBR compounds containing NBR was studied. Cure time and cure rate became faster as NBR content increased. The crosslink density increased with increase in the NBR content. The bound rubber content also increased as the NBR content increased. NBR content of the bound rubber was higher than that of the compounded rubber. The bound rubber content was higher when SBR and NBR were loaded separately than when loading simultaneously. The cure time and cure rate were slower for the separate load than for the simultaneous one. The crosslink density was also lower for the former case than for the latter one.

Properties of Cement Mortar Using Polymer Coated Powdered Rubber (폴리머 코팅 폐타이어 분말을 혼입한 시멘트 모르터의 특성)

  • Song, Hun;Jo, Young-Kug;Park, Hong-Shin;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.51-57
    • /
    • 1996
  • The purpose of this study is to improve the properties by increasing of the adhesion strength of styrene-butadiene rubber(SBR) latex coated powdered rubber in cement mortar. SBR-modified mortar using powdered rubber is also tested as the same method. From the test results, the cement mortar using SBR latex coated powdered rubber have a good mechanical properties compared with that using uncoated powdered rubber. The mechanical properties of SBR-modified mortar using powdered rubber with polymer-cement ratios of 10% are also improved.

  • PDF