Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.5.637

Effects of Intermeshing Rotor for Dispersion of Silica Agglomerates in SBR/BR Compound  

Kim, Sung-Min (Dong Ah Tire & Rubber Co., Ltd.)
Kim, Kwang-Jea (Dong Ah Tire & Rubber Co., Ltd.)
Publication Information
Polymer(Korea) / v.36, no.5, 2012 , pp. 637-642 More about this Journal
Abstract
The effects of mixing geometry (intermeshing vs. tangential rotor) for the dispersion and distribution of silica agglomerates in SBR/BR compound were investigated. Silica dispersion and distribution were found to be better with the intermeshing rotor compared to the tangential rotor. It was concluded that the intermeshing rotor compared to the tangential rotor delivered a higher shear stress due to interlocked rotor geometry to silica agglomerates leading to better dispersity and distribution of silica in the agglomerates.
Keywords
tangential rotor; intermeshing rotor; silica dispersion; SEM(scanning electron microscope); synthetic rubber (SBR/BR);
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. M. Kim, C. Y. Choi, M. K. Jang, J. W. Nah, and K. J. Kim, Elastomers and Composites, 47, 18 (2012).   DOI   ScienceOn
2 S. M. Kim, M. K. Jang, C. Y. Choi, J. W. Nah, and K. J. Kim, Elastomers and Composites, 47, 23 (2012).   DOI   ScienceOn
3 P. S. Kim and J. L. White, Rubber Chem. Technol., 67, 871 (1994).   DOI
4 C. Koolihiran and J. L. White, J. Appl. Polym. Sci., 78, 1551 (2000).   DOI
5 A. N. Gent, Engineering with Rubber: how to design rubber components, Hanser, Munich, 2001.
6 N. Nortey, Rubber World, 237, 23 (2008).
7 R. T. Cooke, British Patent 431, 012 (1935).
8 A. Lasch and E. Stromer, German Patent 641,685 (1937)
9 C. Millauer, German Offenlegung schrift 2,321,854 (1974).
10 K. Inoue, T. Fukui, T. Asai, K. Nakagima, and A. Kuriyama, US Patent 4,456,381 (1984).
11 F. Johnson, H. Hormann, H. Rother, and G. Weckerle, European Patent 0170,397 (1990).
12 J. L. White, Twin Screw Extrusion: Technology and Principles,Carl Hanser, Munich, 1990.
13 J. L. White and K. J. Kim, Thermoplastic and rubber compounds: technology and physical chemistry, Hanser Verlag, Munich, 2008.
14 J. Peter, British Patent 2,201,680 (1988).
15 J. Peter and G. Weckerle, Kautsch. Gummi. Kunstst., 43, 607 (1990)
16 J. Peter and G. Weckerle, Kautsch. Gummi. Kunstst., 43, 896 (1990)
17 J. Peter and G. Weckerle, Kautsch. Gummi. Kunstst., 44, 758 (1991).
18 M. P. Wagner, Rubber Chem. Technol., 49, 703 (1976).   DOI
19 S. H. Jin, J. H. Hong, I. Kim, J. H. Yoon, and S. E. Shim, Polymer(Korea), 35, 342 (2011).
20 S. Wolff, Rubber Chem. Technol., 55, 967 (1982).   DOI
21 E. P. Plueddemann, Silane Coupling Agents, Plenum Press, New York, 1982.
22 K. J. Kim and J. Vanderkooi, Kautsch. Gummi Kunstst., 55, 518 (2002).
23 R. K. Gupta, E. Kennal, and K. J. Kim, Polymer Nanocomposites Handbook, CRC Press, Boca Raton, 2009.
24 S. M. Kim and K. J. Kim, Polymer(Korea), 36, 235 (2012).
25 S. Wolff, Rubber Chem. Technol., 69, 325 (1996).   DOI
26 J. L. White, Rubber Chem. Technol., 65, 527 (1992).   DOI
27 T. Hancock, English Patent 7, 344 (1837).
28 E. M. Chaffee, US Patent 16 (1836).
29 A. Muir, The History of Baker Perkins, W. Heffer & Sons, Cambridge, 1968.
30 D. H. Killheffer, Banbury the Master Mixer, Palmerton, New York, 1962.
31 F. Kempter, German Patent 279,649 (1914)
32 F. Kempter, German Patent 295,431 (1916).
33 F. H. Banbury, US Patent 1,200,070 (1916)
34 F. H. Banbury, US Patent 1,227,522 (1917)
35 F. H. Banbury, US Patent 1,449,930 (1923).
36 F. H. Banbury, US Patent 1,279,220 (1918)
37 F. H. Banbury, US Patent 1,370,398 (1921)