• Title/Summary/Keyword: students' concepts

Search Result 1,526, Processing Time 0.033 seconds

A Survey on Middle School Students' and Biology Teachers' Cognition of Biological Concepts in the Unit 'The Continuity of Life' (중학교 과학 3 'II. 생명의 연속성' 단원의 개념에 대한 교사와 학생의 인식 조사)

  • Min, Hyo-Jeong;Chung, Young-Lan
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.1
    • /
    • pp.21-29
    • /
    • 1997
  • Many middle school students have difficulty in understanding biological concepts because too many concepts are presented in the textbook compared to limited school hours. So, it is necessary to select concepts which are indispensable. The purpose of this study is to select key concepts in the unit 'The Continuity of Life' by surveying students' and teachers' cognition on the concepts. In this study, 78 concepts were extracted from 'Science 3', unit II 'The Continuity of Life'. To survey how students and teachers think the concepts, Likert type questionnaires were made. 300 third grade middle school students and 34 biology teachers were selected by random sampling and the questionnaires were applied. The following results were obtained:1. Students thought 59 concepts out of 78 were important and the mean score of important level of the concepts was 3.60. Students thought 26 concepts out of 78 were difficult and the mean score of diffculty level'of the concepts was 3.26. The more they think the concepts important, the more they think them difficult (r=0.7462, p<0.001). 2. Teachers thought 55 concepts out of 78 were important and the mean score of important level of the concepts was 3.82. Teachers thought 33 concepts out of 78 were difficult and the mean score of diffculty level of the concepts was 3.31. The more they think the concepts important, the more they think them difficult (r=0.6138, p<0.001). 3. The selected concepts were considered more important by teachers than by students(t=2.0150, p<0.05). However, there was no significant difference in evaluating the difficulty level of the concepts(t=0.7327, p>0.05). 4. It was found that students have difficulty in understanding concepts when they are presented in the textbook to require formal preparation than concrete preperation(t=2.6612, p<0.05).

  • PDF

A Study of Elementary Students학 Concepts on Biological Adaptation (초등학생들이 가진 생물학적 적응 개념에 관한 조사 연구)

  • 이용주;심미숙
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • The purpose of this research is to provide useful data in forming sound scientific concepts by investigating elementary students' non-scientific concepts related to their concepts of biological adaptation, and by analyzing the general inclinations and causes of some misconceptions. Twenty-four objective questions were designed to be given to 5th and 6th grade elementary students in order to investigate their concepts of biological adaptation. According to the test results, they formed scientific concepts in most questions. But they appeared to have many misconceptions in some parts which should be guided by the teacher's additional explanations rather than by the education curricula's focus. There are some cases where the 6th grade students had more misconceptions than the 5th grade students who were not systemically taught the concepts of biological adaptation, for the reasons of strengthening or maintaining the misconceptions by confusing the contents of learning. Male and female students have different scientific concepts of different questions according to their interest and attention. Therefore, it is necessary to develop various teaching-learning data which can help the teachers' additional explanations about the concepts of biological adaptation and invoke students' interest and attention, and to seek appropriate measures to form sound scientific concepts among teachers as well as students.

  • PDF

The Informal Knowledge of Elementary School Students about the Concepts of Fraction (분수 개념에 관한 초등학생의 비형식적 지식)

  • Hong, Eun-Suk;Kang, Wan
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.12 no.1
    • /
    • pp.59-78
    • /
    • 2008
  • The purpose of this study was to research and analyze students' informal knowledge before they learned formal knowledge about fraction concepts and to see how to apply this informal knowledge to teach fraction concepts. According to this purpose, research questions were follows. 1) What is the students' informal knowledge about dividing into equal parts, the equivalent fraction, and comparing size of fractions among important and primary concepts of fraction? 2) What are the contents to can lead bad concepts among students' informal knowledge? 3) How will students' informal knowledge be used when teachers give lessons in fraction concepts? To perform this study, I asked interview questions that constructed a form of drawing expression, a form of story telling, and a form of activity with figure. The interview questions included questions related to dividing into equal parts, the equivalent fraction, and comparing size of fractions. The conclusions are as follows: First, when students before they learned formal knowledge about fraction concepts solve the problem, they use the informal knowledge. And a form of informal knowledge is vary various. Second, among students' informal knowledge related to important and primary concepts of fraction, there are contents to lead bad concepts. Third, it is necessary to use students' various informal knowledge to instruct fraction concepts so that students can understand clearly about fraction concepts.

  • PDF

Multidimensional Scaling Analysis of the Proximity of Photosynthesis Concepts In Korean Students

  • Kim, Youngshin;Jeong, Jae-Hoon;Lim, Soo-Min
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.3
    • /
    • pp.650-663
    • /
    • 2013
  • Multidimensional scaling can be used to identify relationships among concepts, revealing the structure of the cognitive framework by measuring distances within perceptual maps. The current study sought to examine the relationships among concepts related to photosynthesis in 2,844 $3^{rd}-11^{th}$ grade science students. The questionnaire included items on 'location,' 'products,' 'reactants,' and 'environmental factors', presenting images related to each theme. Students provided responses corresponding to particular topics, and reported the extent to which the concept was related to the topic on a scale from 1 to 30. The survey results were as follows: first, students were not able to clearly distinguish between or understand the four main topics. Second, students organized their cognitive structures by closely associating related concepts after learning. Third, the presented concepts revealed a mixture of scientific and non-scientific concepts, suggesting that students needed to clearly distinguish the preconceptions through which they organized concepts, so that they are suitable for cognitive structures based on learning. Furthermore, non-scientific concepts within perceptions were consistently maintained throughout learning, affecting the proximity of scientific concepts.

A Study on Effect of Meiosis Background Concepts on the High School Students' Understanding of Meiosis

  • Kim, Young-Ju;Lee, Tae-Sang;Kim, Young-Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.7
    • /
    • pp.908-919
    • /
    • 2010
  • The objectives of this study were to investigate what kind of background concepts is necessary to help that high school students easily understand meiosis and to find out how these background concepts affect students' understanding of meiosis. To achieve these objectives, first this study surveyed meiosis background concepts that high school teachers think. Based on 8 background concepts - nuclear phases, chromosome, mitosis, reproduction, gamete, gene, mother/daughter cell - of previous survey, the questionnaire was made for the 10th(724) and 11th(862) grade students and then was analyzed for the effect of meiosis background concepts on the high school students' understanding of meiosis. Results of the analysis revealed that the influential background concepts are as follow; cell cycle, chromosome in the advanced level, mother/daughter cell, mitosis, chromosome, nuclear phases in the intermediate level, mother/daughter cell, nuclear phases, gene in the low level. And the achievement according to item types was differed not by meiosis achievement, but by each background concepts.

A Study on Perception of 'Environmental Pollution' Concepts In the Elementary School Students (초등학생들의 환경오염 개념에 대한 인식 수준 연구)

  • Hong, Seung-Ho
    • Hwankyungkyoyuk
    • /
    • v.22 no.3
    • /
    • pp.63-71
    • /
    • 2009
  • The aim of this study is to provide the basic data on misconception correction through the investigation of perception extent for 'environmental pollution' concepts in the elementary school students. For this, 18 investigation questions for concepts were created. And then a questionnaire was inputted for 446 elementary school students. The rate of average wrong answer for total questions was 34.9%. The eight questions were appeared as rate of wrong answers over average, suggesting that the misconception extent for 'environmental pollution' was still high. The extent of concepts for total questions between living environments of the study subjects did not show any significant differences. However, the urban students had significantly higher rate of wrong answers than rural students in the three questions, indicating that it is necessary to develop various teaching-learning materials on 'environmental pollution'. Therefore, the teachers have to study the various ways to induce the cognition conflicts through the application of proper teaching-learning for correction of 'environmental pollution' concepts.

  • PDF

Analysis on the Change of Niche Overlap of Elementary School Students' Photosynthesis Concepts through Instruction (초등학교 학생들의 수업 전후 광합성 관련 개념의 지위 중복 변화 분석)

  • Lim, Soo-Min;Kim, Young-Lan;Shin, Ae-Kyung;Kim, Youngshin
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.1
    • /
    • pp.72-85
    • /
    • 2015
  • Conception in learner's cognitive structure has a niche as species in ecosystems. The purpose of this study is to analyze the change of niche overlap of photosynthesis concept through instruction. The photosynthesis concepts were selected from literature review. Selected concepts were in 4 areas: Location of photosynthesis, reactants, products, and environmental factors. The subjects consisted 304 elementary students. The respondent marked the relevance between the presented concepts and each area on a scale of 1~30 points. The analysis of niche overlap in concepts was performed by changing in niche overlap graph, niche space size, and overlap index before and after instruction. The results are as follows. First, on the whole understanding level and relevance of the scientific concepts was increased through instruction as a result of learning. Second, elementary school students cognitive concepts in the form of chunking concepts through classification process. Based on the results, this study has the following suggestion. Students' conceptual ecologies and niche analyzed by this study will be used as material for development of instruction strategy.

Gifted Students Understanding of Science Concepts through Activities of Modifying of Scientific Conceptual Models

  • Kim, Jung-Kuk;Jeong, Seong-Oh;Kim, Young-Min
    • Journal of Gifted/Talented Education
    • /
    • v.14 no.4
    • /
    • pp.113-123
    • /
    • 2004
  • The concern with scientific mode1s has been growing in science education, and schematic models are frequently used to teach science concepts in secondary schools. The aim of this study is to investigate how well the scientifically gifted students understand scientific concepts through activities of modifying scientific models which we developed. Thirty 8th-grade students participated in the study, 15 in a control group and 15 in an experimental group. For the students in the experimental group, teaching material with activities of modifying models, while for the students in the control group, the teaching material with traditional activities such as explanation, problem solving, and reading. The teaching contents in physics for both groups were linear momentum. We used multiple-choice test and essay-type test to evaluate students' achievements after lessons, and then compared their achievements of both groups. Through the research, we could find a clue that model-modifying activities are helpful for the gifted students to enhance their understanding of physics concepts, although the statistics does not show meaningful difference between experimental and control groups.

A Search for the meaningful method of teaching for Correct Understanding of Advanced Mathematics Concepts (고등 수학 개념의 올바른 이해를 위한 유의미한 교수법 탐색)

  • 한길준;우호식
    • The Mathematical Education
    • /
    • v.40 no.2
    • /
    • pp.241-252
    • /
    • 2001
  • Many high school students are having difficulties for studying advanced mathematics concepts. It is more complicated than in junior high school and they are losing interest and confidence. In this paper, advanced mathematics concepts are not just basic concepts such as natural numbers, fractions or figures that can be learned through life experience but concepts that are including variables, functions, sets, tangents and limits are more abstract and formal. For the students to understand these ideas is too heavy a burden and so many of the students concentrate their efforts on just memorizing and not understanding. It is necessary to search for a meaningful method of teaching for advanced mathematics that covers deductive methods and symbols. High school teachers are always asking themselves the following question, “How do we help the students to understand the concept clearly and instruct it in a meaningful way?” As a solution we propose the followings : I. To ensure they have the right understanding of concept image involved in the concept definition. II. Put emphasis on the process of making mental representations and the role of intuition. III. To instruct students and understand them as having many chance of the instructional conversation. In conclusion, we studied the meaningful method of teaching with the theory of Ausubel related to the above proposed methods. To understand advanced mathematics concepts correctly, the mutual understanding of both teachers and students is necessary.

  • PDF

Characteristics of Middle School Students' Conceptual Ecologies on the Need of Existence of Living Things (생물 존재 필요성에 대한 중학생의 개념생태 특징)

  • Song, Hyoun-Mee;Chung, Wan-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.4
    • /
    • pp.648-657
    • /
    • 2001
  • Using the concepts on the need of existence of living things, we investigate students' concepts on interdependence concepts between living things. The purposes of this study are to identify components of conceptual ecologies influencing on students' concepts and to describe the relations between those components and their concepts. The subjects of this study are 4 boys, 2 girls in the 3rd grade of middle school. The sources of data used in this study include a questionnaire, interviews and observation of the discussion class. Then, all data collected through each methods are compared and summarized in the relation to the questions of research. As a conclusion, it reveals that students' concepts are connected with several cognitive or affective components. Especially, the major components influencing on students' concepts are their metaphysical beliefs, conceptions includes other fields. These components function as constraints. Given these results, a teacher who want to teach a new concept to students should consider their characteristics and the components of conceptual ecology.

  • PDF