• 제목/요약/키워드: stud shear connector

검색결과 82건 처리시간 0.028초

Ultimate strength of composite structure with different degrees of shear connection

  • Kim, Sang-Hyo;Jung, Chi-Young;Ahn, Jin-Hee
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.375-390
    • /
    • 2011
  • Composite beam, which combined the material characteristic of the steel and concrete, has been widely used in the construction of various building and bridge system. For the effective application of the composite beam, the composite action on the composite interface between the concrete element and the steel element should be achieved by shear connectors. The behavioral characteristics of composite beam are related with the degree of interaction and the degree of shear connection according to the shear strength and shear stiffness of the stud shear connectors. These two concepts are also affected by the number of installed shear connector and the strength of composite materials. In this study, experimental and analytical evaluations of the degree of shear connection affected by stud diameter were conducted, and the relationship between structural behavior and the degree of shear connection was verified. The very small difference among the ultimate loads of the specimens depending on the change of the degree of connection was possibly because of the dependence of the ultimate load on the characteristic of plastic moment of the composite beam.

Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams

  • Fang, Zhuangcheng;Jiang, Haibo;Chen, Gongfa;Dong, Xiaotong;Shao, Tengfei
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.837-851
    • /
    • 2020
  • This study aims to examine the interface shear behavior between precast high-strength concrete slabs with pockets and steel beam to achieve accelerated bridge construction (ABC). Twenty-six push-out specimens, with different stud height, stud diameter, stud arrangement, deck thickness, the infilling concrete strength in shear pocket (different types of concrete), steel fiber volume of the infilling concrete in shear pocket concrete and casting method, were tested in this investigation. Based on the experimental results, this study suggests that the larger stud diameter and higher strength concrete promoted the shear capacity and stiffness but with the losing of ductility. The addition of steel fiber in pocket concrete would promote the ductility effectively, but without apparent improvement of bearing capacity or even declining the initial stiffness of specimens. It can also be confirmed that the precast steel-concrete composite structure can be adopted in practice engineering, with an acceptable ductility (6.74 mm) and minor decline of stiffness (4.93%) and shear capacity (0.98%). Due to the inapplicability of current design provision, a more accurate model was proposed, which can be used for predicting the interface shear capacity well for specimens with wide ranges of the stud diameters (from13 mm to 30 mm) and the concrete strength (from 26 MPa to 200 MPa).

Experimental and numerical studies on the shear connectors in steel-concrete composite beams at fire and post fire exposures

  • Mirza, Olivia;Shil, Sukanta Kumer;Rashed, M.G.;Wilkins, Kathryn
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.529-542
    • /
    • 2021
  • Shear connectors are required to build composite (concrete and steel) beams. They are placed at the interface of concrete and steel to transfer shear and normal forces between two structural components. Such composite beams are sensitive to provide structural integrity when exposed to fire as they loss strength, stiffness, and ductility at elevated temperature. The present study is designed to investigate the shear resistance and the failure modes of the headed stud shear connectors at fire exposure and post-fire exposure. The study includes ordinary concrete and concrete with carbon nanotubes (CNTs) to build composite (concrete-steel) beams with structural steel. Experimental push tests were conducted on composite beams at ambient and elevated temperatures, such as 200, 400 & 600℃. Moreover, push tests were performed on the composite beams after being exposed to 200, 400 & 600℃. Push test results illustrated the reduction of ultimate shear capacity and stiffness of headed stud shear connectors as the temperature increased. Although similar values of ultimate shear were obtained for the headed stud connectors in both ordinary and CNT concrete, the CNT modified concrete reduced the concrete spalling and cracking compared to ordinary concrete and was observed to be effective at temperatures greater than 400℃. All specimens showed a lower shear resistance at fire exposures compared to the corresponding post-fire exposures. Moreover, numerical simulation by Finite Element (FE) analyses were carried out at ambient temperature and at fire conditions. The FE analysis results show a good agreement with the experimental results. In the experimental studies, failure of all specimens occurred due to shear failure of headed stud, which was later validated by FE analyses using ABAQUS.

Investigation of pipe shear connectors using push out test

  • Nasrollahi, Saeed;Maleki, Shervin;Shariati, Mahdi;Marto, Aminaton;Khorami, Majid
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.537-543
    • /
    • 2018
  • Mechanical shear connectors are commonly used to transfer longitudinal shear forces across the steel-concrete interface in composite beams. Steel pipe as a new shear connector is proposed in this research and its performance to achieve composite strength is investigated. Experimental monotonic push-out tests were carried out for this connector. Then, a nonlinear finite element model of the push-out specimens is developed and verified against test results. Further, the finite element model is used to investigate the effects of pipe thickness, length and diameter on the shear strength of the connectors. The ultimate strengths of these connectors are reported and their respective failure modes are discussed. This paper comprises of the push-out tests of ten specimens on this shear connector in both the vertical and horizontal positions in different reinforced concretes. The results of experimental tests are given as load-deformation plots. It is concluded that the use of these connectors is very effective and economical in the medium shear demand range of 150-350 KN. The dominant failure modes observed were either failure of concrete block (crushing and splitting) or shear failure of pipe connector. It is shown that the horizontal pipe is not as effective as vertical pipe shear connector and is not recommended for practical use. It is shown that pipe connectors are more effective in transferring shear forces than channel and stud connectors. Moreover, based on the parametric study, a formula is presented to predict the pipe shear connectors' capacity.

강합성 교량 스터드 전단연결재의 피로 설계식 평가 및 제안 (Assessment and Recommendation of Fatigue Design Codes for Stud Shear Connectors in Composite Bridge)

  • 이경찬;윤기용
    • 한국방재학회 논문집
    • /
    • 제9권5호
    • /
    • pp.15-21
    • /
    • 2009
  • AASHTO LRFD 설계 기준에 따른 합성형 교량 전단연결재 설계는 주로 강도보다는 피로에 의해 지배되는 것으로 알려져 있다. 이 피로 설계는 1966년 Slutter와 Fisher의 연구에 근거하고 있다. 당시의 시험은 1면으로 수행되었기 때문에 편심이 작용하였고, 이로 인하여 전단연결재에 별도의 인장력이 가해지게 되어 피로 강도가 감소되는 결과를 낳은 것으로 보인다. 또한, 피로 S-N 곡선은 응력변동폭과 하중반복 횟수 각각의 로그 스케일에 대하여 선형 관계를 보이는 것으로 Fisher에 의해 후에 밝혀졌으나, 전단연결재의 경우에 대해서만은 아직도 응력변동폭에 로그를 취하지 않고 있다. 이 연구는 현재 미국, 영국, 유럽, 일본에서 사용 중인 피로 설계 곡선을 비교 검토한 결과 미국 설계 기준이 비교적 보수적인 설계를 하고 있음을 확인하였다. 나아가, 당시의 실험 세팅과 데이터를 재분석하고 최근까지 전 세계에 공개된 피로 실험 데이터를 수집하여 분석 비교하고, 이를 바탕으로 적절한 설계식을 추천하고자 한다.

Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams

  • Hosseinpour, Emad;Baharom, Shahrizan;Badaruzzaman, Wan Hamidon W.;Shariati, Mahdi;Jalali, Abdolrahim
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.485-499
    • /
    • 2018
  • In this paper, a hollow steel tube (HST) shear connector is proposed for use in a slim-floor system. The HST welded to a perforated steel beam web and embedded in concrete slab. A total of 10 push-out tests were conducted under static loading to investigate the mechanical behavior of the proposed HST connector. The variables were the shapes (circular, square and rectangular) and sizes of hollow steel tubes, and the compressive strength of the concrete. The failure mode was recorded as: concrete slab compressive failure under the steel tube and concrete tensile splitting failure, where no failure occurred in the HST. Test results show that the square shape HST in filled via concrete strength 40 MPa carried the highest shear load value, showing three times more than the reference specimens. It also recorded less slip behavior, and less compressive failure mode in concrete underneath the square hollow connector in comparison with the circular and rectangular HST connectors in both concrete strengths. The rectangular HST shows a 20% higher shear resistance with a longer width in the load direction in comparison with that in the smaller dimension. The energy absorption capacity values showed 23% and 18% improvements with the square HST rather than a headed shear stud when embedded in concrete strengths of 25 MPa and 40 MPa, respectively. Moreover, an analytical method was proposed and predicts the shear resistance of the HST shear connectors with a standard deviation of 0.14 considering the shape and size of the connectors.

대직경 스터드 전단연결재의 정적거동 (Static Behavior of Large Stud Shear Connectors)

  • 이필구;심창수;윤태양
    • 한국강구조학회 논문집
    • /
    • 제15권6호통권67호
    • /
    • pp.611-620
    • /
    • 2003
  • 강합성교량에서 19mm 또는 22mm 직경을 갖는 전단연결재가 일반적으로 사용되고 있다. 강교 상세의 단순화와 향후 바닥판 제거의 용이성 및 프리캐스트 바닥판 전단포켓의 효율적인 배치를 위해서는 대직경 스터드 전단연결재가 필요하다. 현재의 전단연결재 설계범위를 넘어서는 대직경 스터드 전단연결재에 대한 push-out 실험을 통해서 정적거동에 관한 항목들을 검토하고 기존 설계식과의 비교를 수행하였다. 25, 27, 30mm 직경의 스터드에 대한 전단실험을 통해서 탄성영역에서의 전단강성을 평가하고 세 개의 직선으로 구성된 하중-상대변위 곡선을 제안하였다. 파괴시의 극한상대변위를 평가하고 극한강도를 유로코드-4의 설계식과 비교하여 설계의 안전율을 평가하였다. 또한 30mm 스터드의 경우는 용접과 콘크리트 지압능력의 개선이 필요한 것으로 나타났다.

Behaviour and design of stainless steel shear connectors in composite beams

  • Yifan Zhou;Brian Uy;Jia Wang;Dongxu Li;Xinpei Liu
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.175-193
    • /
    • 2023
  • Stainless steel-concrete composite beam has become an attractive structural form for offshore bridges and iconic high-rise buildings, owing to the superior corrosion resistance and excellent ductility of stainless steel material. In a composite beam, stainless steel shear connectors play an important role by establishing the interconnection between stainless steel beam and concrete slab. To enable the best use of high strength stainless steel shear connectors in composite beams, high strength concrete is recommended. To date, the application of stainless steel shear connectors in composite beams is still very limited due to the lack of research and proper design recommendations. In this paper, a total of seven pushout specimens were tested to investigate the load-slip behaviour of stainless steel shear connectors. A thorough discussion has been made on the differences between stainless steel bolted connectors and welded studs, in terms of the failure modes, load-slip behaviour and ultimate shear resistance. In parallel with the experimental programme, a finite element model was developed in ABAQUS to simulate the behaviour of stainless steel shear connectors, with which the effects of shear connector strength, concrete strength and embedded connector height to diameter ratio (h/d) were evaluated. The obtained experimental and numerical results were analysed and compared with existing codes of practice, including AS/NZS 2327, EN 1994-1-1 and ANSI/AISC 360-16. The comparison results indicated that the current codes need to be improved for the design of high strength stainless steel shear connectors. On this basis, modified design approaches were proposed to predict the shear capacity of stainless steel bolted connectors and welded studs in the composite beams.

초고성능 콘크리트 바닥판 교량의 전단연결부에 대한 실험적 연구 (An Experimental Study on the shear connection for UHPC Deck Bridge)

  • 유동민;황훈희;김성태;박성용
    • Composites Research
    • /
    • 제24권5호
    • /
    • pp.29-33
    • /
    • 2011
  • 교량 바닥판에서 고성능 재료의 적용은 고가임에도 불구하고 바닥판 중량 감소와 경제성 향상을 위한 대안으로 대표될 수 있다. 초고성능콘크리트 재료를 활용한 교량에서 기존의 헤드형 스터드가 바닥판과 강재 거더사이의 전단력을 충분히 전달할 수 있는지 그 적용성을 검증할 필요가 있다. 이 논문에서는 UHPC 교량 바닥판과 강재 거더의 합성거동을 분석하기 위해 2면 전단실험을 수행하였다. 정적 재하 실험 결과 헤드형 스터드의 실험체별 극한강도는 직경에 비례였으며, 일반 콘크리트, 교량 바닥판에 비해 전단강도가 향상되는 것으로 나타났다.

드라이빙핀전용 전단연결재를 이용한 합성보의 탄소성 거동 (Elasto-Plastic Behaviors of Composite Beam using Shear Connectors installed in Driving Pins)

  • 양일승;오영호;이만재
    • 한국강구조학회 논문집
    • /
    • 제24권1호
    • /
    • pp.73-80
    • /
    • 2012
  • 합성보는 철골보와 콘크리트슬래브를 스터드볼트로 일체화한 구조이며, 일반적으로 용접을 이용한 스터드볼트(Stud Bolts)가 연결재로 많이 사용된다. 그러나, 스터드볼트는 감전사고와 같은 전기재해나 용접불량 등 문제점을 가지고 있다. 따라서, 드라이빙핀을 이용한 기계적 접합이 대안으로 대두되고 있다. 본 연구는 드라이빙핀 전용 제안형 전단연결재를 이용한 합성보의 횡하중(지진하중이나 풍하중)시 구조적 성능을 평가하고자 한다. 기존형 합성보과 제안형 합성보는 안정된 탄소성 거동을 나타내었으며 기둥주변에서 콘크리트 압괴로 내력이 저하되었다. 따라서, 제안형 합성보는 기존형 합성보를 대체할 수 있을 것으로 판단된다.