• 제목/요약/키워드: structure element

검색결과 6,316건 처리시간 0.03초

충격흡수용 복합부재의 에너지 흡수특성에 관한 유한요소해석 (Finite Element Analysis on the Energy Absorption Characteristics of Hybrid Structure)

  • 신현우
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.101-107
    • /
    • 2004
  • Recently the objective of vehicle design was focused on the crash safety and the energy saving. For the energy saving vehicle structures must be light weight, but for the crash safety some energy absorbing elements must be added. In this paper hybrid structure which consists of a steel and a FRP was studied on the energy absorption characteristics under the impact load by finite element method. Test results of the other researchers were compared with that of computer simulation on this simple hybrid structure. Side rail of vehicle front structure was replaced with hybrid materials for the application of the vehicle structure. 35mph frontal crash simulation was performed with hybrid structure and with conventional steel structure. By the adoption of hybrid structure, the improvement of energy absorption characteristics and reduction of weight was observed under the frontal crash simulation.

A new ALE finite element techniques for wind-structure interactions

  • Choi, Chang-Koon;Yu, Won-Jin
    • Wind and Structures
    • /
    • 제3권4호
    • /
    • pp.291-302
    • /
    • 2000
  • A new finite element technique to solve the problem of wind and structure interactions is presented. Conventionally, wind analysis is performed on the Eulerian description in which the finite element mesh would not move in accordance with the wind flow. However, it is not the case in wind-structure interaction problems because nodes attached to the surface of structure should move with the displacement of structure. The arbitrary Lagrangian-Eulerian (ALE) method treats the mesh and flow independently, and allow the mesh to move. In this study, the analysis domain is divided into regions of the structure, air around the structure and the interface of two regions. To satisfy the compatibility and equilibrium conditions between separated regions and to carry out the efficient analysis, the rigid link is used. Also the equation of wind and that of structure are arranged in a single matrix equation.

보 요소를 이용한 파이프의 구조-음향 연성해석 (Structure-Acoustic Coupling Analysis of a Pipe Using the Beam Element)

  • 서영수;정의봉;정호경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.282-287
    • /
    • 2004
  • Noise and vibrations in the pipe systems may be arisen from pumps. compressors, etc. The source mechanism is classified with the mechanical and hydraulic. Mechanical vibrations may be excited by the unbalance in rotating machinery. Hydraulic source may be generated in the turbulent flow. The vibro-acoustic behaviour of flexible, fluid-filled pipe system is a very complex and determined by two parameters: the frequency and the mass ratio of fluid and pipe wall. As the frequency increases, the mode number in the pipe increases. The mass ratio is close to one, the structure and the fluid are strongly coupled. In ease the diameter is very small to the length of pipe, the behaviour of pipe is same as a beam. The finite element formulation when the fluid and the structure are coupled is derived by using beam element. The Numerical results are compared with the package (Sysnoise) which is using the shell element.

  • PDF

Simultaneously evolutionary optimization of several natural frequencies of a two dimensional structure

  • Zhao, Chongbin;Steven, G.P.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • 제7권5호
    • /
    • pp.447-456
    • /
    • 1999
  • This paper presents a solution method, which can be regarded as the further extension of the generalized evolutionary method (Zhao et al. 1998a), for the simultaneous optimization of several different natural frequencies of a structure in general and a two dimensional structure in particular. The main function of the present method is to optimize the topology of a structure so as to simultaneously make several different natural frequencies of interest to be of the corresponding different desired values for the target structure. In order to develop the present method, the new contribution factor of an element is proposed to consider the contribution of an element to the gaps between the currently calculated values for the different natural frequencies of interest and their corresponding desired values in a weighted manner. Using this new contribution factor of an element, the most inefficiently used material can be detected and removed gradually from the design domain of a structure. Through applying the present method to optimize two and three different natural frequencies of a two dimensional structure, it has been demonstrated that it is possible and applicable to use the generalized evolutionary method for tackling the simultaneous optimization of several different natural frequencies of a structure in the structural design.

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

입자요소를 이용한 미세 성형 부품의 유한요소 해석 및 실험 (FE Analysis and Experiments of Milli-fart forming Using Grain and Grain Boundary Element)

  • 구태완;강범수
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.109-118
    • /
    • 2003
  • The recent trend towards miniaturization causes an increased demand for parts with very small dimensions. Milli-structure components are classified as a component group whose size is between macro- and micro-scale. The manufacturing process of these components of thin sheet metal forming has a microscopic properties in addition to a typical phenomenon of bulk deformation because of the forming size. Also, the material properties and the deformation behavior change with miniaturization, which means that, a coarse grained materials show a higher resistance against deformation, when the grain size is in the range of the sheet thickness. In this study, a new numerical approach is proposed to simulate intergranular milli-structure in forming by the finite element method. The grain element and grain boundary element are introduced to simulate the milli-structure in the bending. The grain element is used to analyze the deformation of individual grain while the grain boundary element is for the investigation on the movement of the grain boundary. Also, the result of the finite element analysis is confirmed by a series of milli-sized forming experiments.

접합요소를 도입한 기초지반의 유한요소해석 (The Finite Element Analysis of Foundation Layer by Introducing Interface Element)

  • 양극영;이대재
    • 한국전산구조공학회논문집
    • /
    • 제15권1호
    • /
    • pp.9-20
    • /
    • 2002
  • 본 연구의 목적은 비선형 흙-구조물 상호 작용문제를 연구하기 위한 계산 절차를 개발하는 것이다. 흙-구조물 상호 작용 거동을 연구하기 위하여 연직과 수평하중을 동시에 받은 대상기초와 강널말뚝으로 보강된 기초지반에 대한 유한 요소 수치해석을 하였으며 흙과 기초구조물 사이의 상호작용 거동을 모델하기 위하여 접합요소를 사용하였다 주 해석 결과는 다음과 같다. 1. 침하와 측방변위의 예측에 대해서는, 접합요소를 사용한 결과가 더 큰 값을 얻었다. 2. 극한지지력 결정에 대해서는 접합요소를 사용한 경우가 약 12%정도 더 작게 나타났다 3. 대상기초의 수평과 연직변위는 접합요소의 영향을 받았다.

고유진동수 시험을 통한 복합재 격자구조체의 유한요소모델 검증 (Verification of Finite Element Model for Composite Lattice Structures through Natural Frequency Test)

  • 임재문;신광복;이상우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.832-834
    • /
    • 2017
  • 본 논문에서는 고유진동수 시험을 통해 복합재 격자구조체의 유한요소모델을 검증하였다. 복합재 격자구조체의 유한요소모델은 빔, 쉘 그리고 솔리드 요소를 사용하여 생성하였다. 고유진동수는 자유 경계조건 하에서 충격시험법을 사용하여 측정하였다. 쉘과 솔리드 요소의 유한요소해석 결과, 고유진동수 시험과 잘 일치하는 것을 확인하였다. 빔 요소는 섬유 비교차부의 물성저하를 고려하지 못하여 오차가 발생된 것으로 판단된다.

  • PDF

축대칭 쉘 요소의 유한요소 수식화와 지반공학적 활용 (Numerical Formulation of Axisymmetric Shell Element and Its Application to Geotechnical Problems)

  • 신호성;김진욱
    • 한국지반공학회논문집
    • /
    • 제36권12호
    • /
    • pp.27-34
    • /
    • 2020
  • 구조물에 대한 축대칭 쉘요소는 지반과 구조물의 상호작용에 대한 유한요소해석에서 효율성과 정확성을 높이게 된다. 본 논문에서는 Kirchhoff 이론에 근거한 축대칭 쉘요소의 힘평형 방정식과 모멘트 평형 방정식을 유도하였다. 축방향 변형에 대한 지배방정식은 등매개변수 형상함수를 이용한 Galerkin 수식화를 수행하고, 휨에 대한 지배방정식은 고차의 형상함수를 이용하였다. 개발된 축대칭 쉘요소는 지반과의 연계해석을 위하여 지반해석 유한요소 프로그램인 Geo-COUS에 결합하였다. 원형판과 액체 저장 탱크에 대한 예제해석을 통하여 개발된 요소의 정확성을 확인하였다. 그리고 축대칭 쉘요소에 대한 에너지 평형방정식을 제시하였다.

스펙트럴 요소를 이용한 곡선 보 구조물의 동적거동 해석 (Study on the dynamic behaviors of curved beam structure using spectral element)

  • 이준근;이우식;박철희
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.83-88
    • /
    • 1996
  • The significance of spectral element method is that it can treat the mass and stiffness distribution exactly in contrast to the conventional finite element method, and therefore the dynamic behaviors within each spectral element can be obtained exactly. The present study provides the derivation of the spectral element of a curved beam, while the previous ones presented that of a straight structure. Further, in order to verify the derived spectral element, the natural frequencies of a ring by the spectral element method are compared with those by the analytical method and those by the FEM. From the verification, derived spectral element is admissible. And the dynamic behaviors of curved beam are simulated by using the derived spectral element of a curved beam.

  • PDF