• Title/Summary/Keyword: structure and function of plant

Search Result 193, Processing Time 0.026 seconds

A Study on the Minimum Weight Design for Flexible Structure (유연구조물의 최소중량설계에 관한 연구)

  • 박중현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.153-159
    • /
    • 2004
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken.

Function of Dietary Fibers as food ingredients

  • Hwang, Jae-Kwan
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.4
    • /
    • pp.153-163
    • /
    • 1992
  • Dietary fiber imparts both mutritional and functional properties to foods. This review deals with (1) the classification of dietary fiber, (2) the plant cell wall models, (3) the relations between structure and physicochemical and functional properties of dietary fiber and (4) the applications of dietary fiber in foods. Dietary fiber can be classified in terms of source, plant function, solubility, charge and topology. Plant cell wall models are presented to provide information on the interconnections of dietary fiber components which determines the content of soluble and insoluble dietary fiber content. In reality, physicochemical and functional properties of dietary fiber originate factors such as chemical constituents , charge, branching degree, conformation and etc. Dietary fibers possess a variety of functional properties in food systems, which thus make them useful in food application. In particular, rheology and gelation of water-soluble gums or hydrocolloids are discussed for their effects on food quality. A guideline s also listed for the gum selection to meet the best product requirements.

  • PDF

Bridging Comparative Genomics and DNA Marker-aided Molecular Breeding

  • Choi, Hong-Kyu;Cook, Douglas R.
    • Korean Journal of Breeding Science
    • /
    • v.43 no.2
    • /
    • pp.103-114
    • /
    • 2011
  • In recent years, genomic resources and information have accumulated at an ever increasing pace, in many plant species, through whole genome sequencing, large scale analysis of transcriptomes, DNA markers and functional studies of individual genes. Well-characterized species within key plant taxa, co-called "model systems", have played a pivotal role in nucleating the accumulation of genomic information and databases, thereby providing the basis for comparative genomic studies. In addition, recent advances to "Next Generation" sequencing technologies have propelled a new wave of genomics, enabling rapid, low cost analysis of numerous genomes, and the accumulation of genetic diversity data for large numbers of accessions within individual species. The resulting wealth of genomic information provides an opportunity to discern evolutionary processes that have impacted genome structure and the function of genes, using the tools of comparative analysis. Comparative genomics provides a platform to translate information from model species to crops, and to relate knowledge of genome function among crop species. Ultimately, the resulting knowledge will accelerate the development of more efficient breeding strategies through the identification of trait-associated orthologous genes and next generation functional gene-based markers.

Effect of the incoherent earthquake motion on responses of seismically isolated nuclear power plant structure

  • Ahmed, Kaiser;Kim, Dookie;Lee, Sang H.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.33-44
    • /
    • 2018
  • Base-isolated nuclear power plant (BI-NPP) structures are founded on expanded basemat as a flexible floating nuclear island, are still lacking the recommendation of the consideration of incoherent motion effect. The effect of incoherent earthquake motion on the seismic response of BI-NPP structure has been investigated herein. The incoherency of the ground motions is applied by using an isotropic frequency-dependent spatial correlation function to perform the conditional simulation of the reference design spectrum compatible ground motion in time domain. Time history analysis of two structural models with 486 and 5 equivalent lead plug rubber bearing (LRB) base-isolators have been done under uniform excitation and multiple point excitation. two different cases have been considered: 1) Incoherent motion generated for soft soil and 2) Incoherent motion generated for hard rock soil. The results show that the incoherent motions reduce acceleration and the lateral displacement responses and the reduction is noticeable at soft soil site and higher frequencies.

Robust design scheme of VS-MRC to time-varying plant

  • Tanaka, Kanya;Shibata, Satoru;Shimizu, Akira;Sakamoto, Masaru;Uchikado, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.56-59
    • /
    • 1995
  • In this paper, we propose a new rubust design scheme of a variable structure type model reference control (VS-MRC) which can be applied to linear time-varing plants. Our idea is started from the hypothesis that the plant consists of two parts, i.e., one has time-invariant parameters and the other has time-varying parameters. We consider the former the nominal part of the plant and the latter a kind of disturbance to the nominal one. In this design scheme, the ordinary VS-MRC is adopted to the nominal part and the signum function is introduced to eliminate the influence of the disturbance.

  • PDF

Bacterial Community Structure and Function Shift in Rhizosphere Soil of Tobacco Plants Infected by Meloidogyne incognita

  • Wenjie, Tong;Junying, Li;Wenfeng, Cong;Cuiping, Zhang;Zhaoli, Xu;Xiaolong, Chen;Min, Yang;Jiani, Liu;Lei, Yu;Xiaopeng, Deng
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.583-592
    • /
    • 2022
  • Root-knot nematode disease is a widespread and catastrophic disease of tobacco. However, little is known about the relationship between rhizosphere bacterial community and root-knot nematode disease. This study used 16S rRNA gene sequencing and PICRUSt to assess bacterial community structure and function changes in rhizosphere soil from Meloidogyne incognita-infected tobacco plants. We studied the rhizosphere bacterial community structure of M. incognita-infected and uninfected tobacco plants through a paired comparison design in two regions of tobacco planting area, Yuxi and Jiuxiang of Yunnan Province, southwest China. According to the findings, M. incognita infection can alter the bacterial population in the soil. Uninfested soil has more operational taxonomic unit numbers and richness than infested soil. Principal Coordinate Analysis revealed clear separations between bacterial communities from infested and uninfested soil, indicating that different infection conditions resulted in significantly different bacterial community structures in soils. Firmicutes was prevalent in infested soil, but Chloroflexi and Acidobacteria were prevalent in uninfested soil. Sphingomonas, Streptomyces, and Bradyrhizobium were the dominant bacteria genera, and their abundance were higher in infested soil. By PICRUSt analysis, some metabolism-related functions and signal transduction functions of the rhizosphere bacterial community in the M. incognita infection-tobacco plants had a higher relative abundance than those uninfected. As a result, rhizosphere soils from tobacco plants infected with M. incognita showed considerable bacterial community structure and function alterations.

Computational Approaches for Structural and Functional Genomics

  • Brenner, Steven-E.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.17-20
    • /
    • 2000
  • Structural genomics aims to provide a good experimental structure or computational model of every tractable protein in a complete genome. Underlying this goal is the immense value of protein structure, especially in permitting recognition of distant evolutionary relationships for proteins whose sequence analysis has failed to find any significant homolog. A considerable fraction of the genes in all sequenced genomes have no known function, and structure determination provides a direct means of revealing homology that may be used to infer their putative molecular function. The solved structures will be similarly useful for elucidating the biochemical or biophysical role of proteins that have been previously ascribed only phenotypic functions. More generally, knowledge of an increasingly complete repertoire of protein structures will aid structure prediction methods, improve understanding of protein structure, and ultimately lend insight into molecular interactions and pathways. We use computational methods to select families whose structures cannot be predicted and which are likely to be amenable to experimental characterization. Methods to be employed included modern sequence analysis and clustering algorithms. A critical component is consultation of the presage database for structural genomics, which records the community's experimental work underway and computational predictions. The protein families are ranked according to several criteria including taxonomic diversity and known functional information. Individual proteins, often homologs from hyperthermophiles, are selected from these families as targets for structure determination. The solved structures are examined for structural similarity to other proteins of known structure. Homologous proteins in sequence databases are computationally modeled, to provide a resource of protein structure models complementing the experimentally solved protein structures.

  • PDF

Optimal Structural Design for Flexible Space Structure with Control System Based on LMI

  • Park, Jung-Hyen;Cho, Kyeum-Rae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.75-82
    • /
    • 2002
  • A simultaneous optimal design problem of structural and control systems is discussed by taking a 3-D truss structure as an object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The structural objective function is the structural weight and the control objective function is $H_{\infty}$ norm from the disturbance input to the controlled output in the closed-loop system. The design variables are cross sectional areas of the truss members. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI) By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of simultaneous optimal design of structural and control systems.

Morphological Classification of Trichomes Associated with Possible Biotic Stress Resistance in the Genus Capsicum

  • Kim, Hyun-Jung;Seo, Eun-Young;Kim, Ji-Hyun;Cheong, Hee-Jin;Kang, Byoung-Cheorl;Choi, Do-Il
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • Trichomes are specialized epidermal structure having the functions of physical and chemical block against biotic and abiotic stresses. Several studies on $Capsicum$ species revealed that virus and herbivore resistance is associated with trichome-formation. However, there is no research on the structural characterization of trichomes developed on the epidermis of $Capsicum$ spp. Thus, this study attempts to charaterize the trichome morphologies in 5 species of $Capsicum$ using a Field Emission Scanning Electron Microscopy (FESEM). Six main trichome types were identified by their morphology under FESEM. Both glandular and non-glandular types of trichomes were developed on the epidermal tissues of $Capsicum$ spp. The glandular trichome were further classified into type I, IV and VII according to their base, stalk length, and stalk. Non-glandular trichomes were also classified into type II, III, and V based on stalk cell number and norphology. Almost all the species in $C.$ $chinense$ and $C.$ $pubescens$ had glandular trichomes. To our knowledge, this is the first study on classification of trichomes in the genus $Capsicum$ and, our results could provide basic informations for understanding the structure and function of trichomes on the epidermal differentiation and association with biotic stress tolerance.

Evaluation on Structure Design Sensitivity and Meta-modeling of Passive Type DSF for Offshore Plant Float-over Installation Based on Orthogonal Array Experimental Method (직교배열실험 방법 기반 해양플랜트 플로트오버 설치 공법용 수동형 DSF의 구조설계 민감도와 메타모델링 평가)

  • Lee, Dong-Jun;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.85-95
    • /
    • 2021
  • Structure design sensitivity was evaluated using the orthogonal array experimental method for passive-type deck support frame (DSF) developed for float-over installation of the offshore plant. Moreover, approximation characteristics were also reviewed based on various meta-models. The minimum weight design of the DSF is significantly important for securing both maneuvering performance and buoyancy of a ship equipped with the DSF and guaranteeing structural design safety. The performance strength of the passive type DSF was evaluated through structure analysis based on the finite element method. The thickness of main structure members was applied to design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experimental method and analysis of variance. The optimum design case was also identified from the orthogonal array experiment results. Various meta-models, such as Chebyshev orthogonal polynomial, Kriging, response surface method, and radial basis function-based neural network, were generated from the orthogonal array experiment results. The results of the orthogonal array experiment were validated using the meta-modeling results. It was found that the radial basis function-based neural network among the meta-models could approximate the design space of the passive type DSF with the highest accuracy.