DOI QR코드

DOI QR Code

Morphological Classification of Trichomes Associated with Possible Biotic Stress Resistance in the Genus Capsicum

  • Kim, Hyun-Jung (Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Seo, Eun-Young (Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Kim, Ji-Hyun (Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Cheong, Hee-Jin (Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Kang, Byoung-Cheorl (Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University) ;
  • Choi, Do-Il (Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University)
  • Received : 2011.10.23
  • Accepted : 2011.12.31
  • Published : 2012.03.01

Abstract

Trichomes are specialized epidermal structure having the functions of physical and chemical block against biotic and abiotic stresses. Several studies on $Capsicum$ species revealed that virus and herbivore resistance is associated with trichome-formation. However, there is no research on the structural characterization of trichomes developed on the epidermis of $Capsicum$ spp. Thus, this study attempts to charaterize the trichome morphologies in 5 species of $Capsicum$ using a Field Emission Scanning Electron Microscopy (FESEM). Six main trichome types were identified by their morphology under FESEM. Both glandular and non-glandular types of trichomes were developed on the epidermal tissues of $Capsicum$ spp. The glandular trichome were further classified into type I, IV and VII according to their base, stalk length, and stalk. Non-glandular trichomes were also classified into type II, III, and V based on stalk cell number and norphology. Almost all the species in $C.$ $chinense$ and $C.$ $pubescens$ had glandular trichomes. To our knowledge, this is the first study on classification of trichomes in the genus $Capsicum$ and, our results could provide basic informations for understanding the structure and function of trichomes on the epidermal differentiation and association with biotic stress tolerance.

Keywords

References

  1. Ager, F. J., Ynsa, M. D., Domnguez-Sol, J. R., Lopez-Mart, M. C., Gotor, C. and Romero, L. C. 2003. Nuclear micro-probe analysis of Arabidopsis thaliana leaves. Nucl. Instr. Methods. Phys. Res. 210:401-406. https://doi.org/10.1016/S0168-583X(03)01046-2
  2. Antonious, G. F. 2001. Production and quantification of methyl ketones in wild tomato accessions. J. Environ. Sci. Heal. Part B 36:835-848. https://doi.org/10.1081/PFC-100107416
  3. Besser, K., Harper, A., Welsby, N., Schauvinhold, I., Slocombe, S., Li, Y., Dixon, R. A. and Broun, P. 2009. Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol. 149:499-514. https://doi.org/10.1104/pp.108.126276
  4. Bonierbale, M. W., Plaisted, R. L., Pineda, O. and Tanksley, S. D. 1994. QTL analysis of trichome-mediated insect resistance in potato. Theor. Appl. Genet. 87:973-987.
  5. Duffey, S. S. and Isman, M. B. 1981. Inhibition of insect larval growth by phenolics in glandular trichomes of tomato leaves. Experientia 37:574-576. https://doi.org/10.1007/BF01990057
  6. Elle, E., van Dam, N. M. and Hare, J. D. 1999. Cost of glandular trichomes, a "resistance" character in Datura wrightii Regel (Solanaceae). Evolution 53:22-35. https://doi.org/10.2307/2640917
  7. Esau, K. 1979. Anatomy of Seed Plants. 2nd ed. Wiley. New York. pp. 12-16.
  8. Espigares, T. and Peco, B. 1995. Mediterranean annual pasture dynamics: impact of autumn drought. J. Ecol. 83:135-142. https://doi.org/10.2307/2261157
  9. Fahn, A. 2000. Structure and function of secretory cells. In: Advances in Botanical Research. Plant Trichomes, ed. by D. L. Hallahan, J. C. Gray and J. A. Callow, pp. 37-75. Academic Press, New York.
  10. Frary, A., Doganlar, S., Daunay, M. C. and Tanksley, S. D. 2003. QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theor. Appl. Genet. 107:359-370. https://doi.org/10.1007/s00122-003-1257-5
  11. Glover, B. J. and Martin, C. 2000. Speciation of epidermal cell morphology. In: Advances in Botanical Research. Plant Trichomes, ed. by D. L. Hallahan, J. C. Gray and J. A. Callow, pp. 193-217. Academic Press, New York.
  12. Hallahan, D. L., Gray, J. C. and Callow, J. A. 2000. Advances in Botanical Research: Plant Trichomes. Academic Press. New York. pp. 1-316.
  13. Johnson, H. B. 1975. Plant pubescence: an ecological perspective. Bot. Rev. 41:233-258. https://doi.org/10.1007/BF02860838
  14. Kang, J. H., Shi, F., Jones, A. D., Marks, M. D. and Howe, G. A. 2010. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J. Exp. Bot. 61:1053-1064. https://doi.org/10.1093/jxb/erp370
  15. Karabourniotis, G., Kyparissis, A. and Manetas, Y. 1993. Leaf hairs of Olea europaea L. protect underlying tissue against UV-B radiation damage. Environ. Exp. Bot. 33:341-345. https://doi.org/10.1016/0098-8472(93)90035-E
  16. Karabourniotis, G., Papadopoulos, K., Papamarkou, M. and Manetas, Y. 1992. Ultraviolet-B radiation absorbing capacity of leaf hairs. Physiol. Plant. 84:414-418.
  17. Kennedy, G. G. 2003. TOMATO, PESTS, PARASITOIDS, AND PREDATORS: Tritrophic interactions involving the genus Lycopersicon. Annu. Rev. Entomol. 48:51-72. https://doi.org/10.1146/annurev.ento.48.091801.112733
  18. Kim, H. J., Han, J. H., Kim, S., Lee, H. R., Shin, J. S., Kim, J. H., Cho, J., Kim, Y. H., Lee, H. J., Kim, B. D. and Choi, D. 2011. Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.). Theor. Appl. Genet. 122:1051-1058. https://doi.org/10.1007/s00122-010-1510-7
  19. Kim, H. J., Han, J. H., Kwon, J. K., Park, M., Kim, B. D. and Choi, D. 2010. Fine mapping of pepper trichome locus 1 controlling trichome formation in Capsicum annuum L. CM334. Theor. Appl. Genet. 120:1099-1106. https://doi.org/10.1007/s00122-009-1237-5
  20. Kolb, D. and Müller, M. 2004. Light, conventional and environmental scanning electron microscopy of the trichomes of Cucurbita pepo subsp. pepo var. styriaca and histochemistry of glandular secretory products. Ann. Bot. 94:515-526. https://doi.org/10.1093/aob/mch180
  21. Lee, Y. S. 2000. Modern Plant Morphology. Woosung Publishing Co., Seoul, pp. 181-204.
  22. Levin, D. A. 1973. The role of trichomes in plant defense. Quart. Rev. Biol. 48:3-15. https://doi.org/10.1086/407484
  23. Oh, S. K., Baek, K. H., Park, J. M., Yi, S. Y., Yu, S. H., Kamoun, S. and Choi, D. 2008. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol. 177:977-989. https://doi.org/10.1111/j.1469-8137.2007.02310.x
  24. Payne, W. W. 1978. A glossary of plant hair terminology. Brittonia 30:239-255. https://doi.org/10.2307/2806659
  25. Sallaud, C., Rontein, D. and Onillon, S. 2009. A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21:301-317. https://doi.org/10.1105/tpc.107.057885
  26. Schilmiller, A. L., Schauvinhold, I., Larson, M., Xu, R., Charbonneau, A. L., Schmidt, A., Wilkerson, C., Last, R.L. and Pichersky, E. 2009. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc. Natl. Acad. Sci. USA 106:10865-10870. https://doi.org/10.1073/pnas.0904113106
  27. Shepherd, R. W. and Wagner, G. J. 2007. Phylloplane proteins: emerging defenses at the aerial frontline? Trends Plant Sci. 12:51-56. https://doi.org/10.1016/j.tplants.2006.12.003
  28. Skaltsa, H., Verykokidou, E., Harvala, C., Karabourniotis, G. and Manetasi, Y. 1994. UV-B protective potential and flavonoid content of leaf hairs of Quercus ilex. Phytochemistry 37:987-990. https://doi.org/10.1016/S0031-9422(00)89514-X
  29. Theobald, W. L., Krahulik, J. L. and Rollins, R. C. 1979. Trichome description and classifi cation. In: Anatomy of the Dicotyledons, 2nd edition, ed. by C. R. Metcalfe and L. Chalk, pp. 40-53. Clarendon Press, Oxford.
  30. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A. and Coupland, G. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003-1006. https://doi.org/10.1126/science.1091761
  31. Werker, E. 2000. Trichome diversity and development. In: Advances in Botanical Research. Plant Trichomes, ed. by D. L. Hallahan, J. C. Gray and J. A. Callow, pp. 1-35. Academic Press, New York.
  32. Yeom, S. I., Baek, H. K., Oh, S. K., Kang, W. H., Lee, S. J., Lee, J. M., Seo, E., Rose, J. C. K., Kim, B. D. and Choi, D. 2011. Use of a secretion trap screen in pepper following Phytophthora capsici infection reveals novel functions of secreted plant proteins in modulating cell death. Mol. Plant-Microbe Interact. 24:671-684. https://doi.org/10.1094/MPMI-08-10-0183
  33. Yoon, J., Chung, W. and Choi, D. 2009. NbHB 1, Nicotiana benthamiana homeobox 1, is a jasmonic acid-dependent positive regulator of pathogen-induced plant cell death. New Phytol. 184:71-84. https://doi.org/10.1111/j.1469-8137.2009.02967.x

Cited by

  1. Ambient Variable Pressure Field Emission Scanning Electron Microscopy for Trichome Profiling of Plectranthus tomentosa by Secondary Electron Imaging vol.43, pp.1, 2013, https://doi.org/10.9729/AM.2013.43.1.34
  2. Rosmarinic acid ameliorates the negative effects of salinity in in vitro-regenerated potato explants (Solanum tuberosum L.) vol.40, pp.4, 2018, https://doi.org/10.1007/s11738-018-2622-y