Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.08.2022.0105

Bacterial Community Structure and Function Shift in Rhizosphere Soil of Tobacco Plants Infected by Meloidogyne incognita  

Wenjie, Tong (Yunnan Academy of Tobacco Agricultural Sciences)
Junying, Li (Yunnan Academy of Tobacco Agricultural Sciences)
Wenfeng, Cong (National Academy of Agriculture Green Development, China Agricultural University)
Cuiping, Zhang (Yuxi Branch of Yunnan Provincial Tobacco Company)
Zhaoli, Xu (Yunnan Academy of Tobacco Agricultural Sciences)
Xiaolong, Chen (Tobacco Leaf Purchase Center, China Tobacco Henan Industrial Co., Ltd.)
Min, Yang (College of Agronomy, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University)
Jiani, Liu (College of Agronomy, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University)
Lei, Yu (College of Agronomy, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University)
Xiaopeng, Deng (Yunnan Academy of Tobacco Agricultural Sciences)
Publication Information
The Plant Pathology Journal / v.38, no.6, 2022 , pp. 583-592 More about this Journal
Abstract
Root-knot nematode disease is a widespread and catastrophic disease of tobacco. However, little is known about the relationship between rhizosphere bacterial community and root-knot nematode disease. This study used 16S rRNA gene sequencing and PICRUSt to assess bacterial community structure and function changes in rhizosphere soil from Meloidogyne incognita-infected tobacco plants. We studied the rhizosphere bacterial community structure of M. incognita-infected and uninfected tobacco plants through a paired comparison design in two regions of tobacco planting area, Yuxi and Jiuxiang of Yunnan Province, southwest China. According to the findings, M. incognita infection can alter the bacterial population in the soil. Uninfested soil has more operational taxonomic unit numbers and richness than infested soil. Principal Coordinate Analysis revealed clear separations between bacterial communities from infested and uninfested soil, indicating that different infection conditions resulted in significantly different bacterial community structures in soils. Firmicutes was prevalent in infested soil, but Chloroflexi and Acidobacteria were prevalent in uninfested soil. Sphingomonas, Streptomyces, and Bradyrhizobium were the dominant bacteria genera, and their abundance were higher in infested soil. By PICRUSt analysis, some metabolism-related functions and signal transduction functions of the rhizosphere bacterial community in the M. incognita infection-tobacco plants had a higher relative abundance than those uninfected. As a result, rhizosphere soils from tobacco plants infected with M. incognita showed considerable bacterial community structure and function alterations.
Keywords
PICRUSt; root-knot nematode disease; soil bacterial community; tobacco; 16S rRNA gene sequencing;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.   DOI
2 Berg, G. and Smalla, K. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68:1-13.   DOI
3 Bowen, J. L., Kearns, P. J., Byrnes, J. E. K., Wigginton, S., Allen, W. J., Greenwood, M., Tran, K., Yu, J., Cronin, J. T. and Meyerson, L. A. 2017. Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plant. Nat. Commun. 8:433.
4 Cai, Q., Zhou, G,. Ahmed, W., Cao, Y., Zhao, M., Li, Z. and Zhao, Z. 2021. Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars. Eur. J. Plant Pathol. 160:265-276.   DOI
5 Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N. and Knight, R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108 Suppl 1:4516-4522.   DOI
6 Chaparro, J. M., Sheflin, A. M., Manter, D. K. and Vivanco, J. M. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48:489-499.   DOI
7 Chen, Z. B., Xia, Z. Y., Xu, S. G., Wang, H. Y., Zhao, X. N. and Li, J. W. 2015. Screening of tobacco endophytic bacteria resistant to Meloidogyne spp. and its control effect. Acta Tab. Sin. 21:71-75 (in Chinese).
8 Chen, X., Gao, L., Deng, X., Yang, Y., Wang, J., Zhang, Z., Cai, Y., Huang, F., Yang, M., Tong, W. and Yu, L. 2022. Effects of Meloidogyne incognita on the fungal community in tobacco rhizosphere. Rev. Bras. Cienc. Solo. 46:e0210127.
9 Ciancio, A., Colagiero, M., Pentimone, I. and Rosso, L. 2016. Soil microbial communities and their potential for root-knot nematodes management: a review. Environ. Eng. Manag. J. 15:1833-1839.   DOI
10 Cui, J.-K., Ren, H.-H., Meng, H.-G., Chang, D. and Jiang, S.-J. 2021. Research progress on the occurrence and control of tobacco root knot nematode in China. Acta Phytopathol. Sin. 51:663-682 (in Chinese).
11 Edgar, R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996-998.   DOI
12 Florencio-Ortiz, V., Selles-Marchart, S., Zubcoff-Vallejo, J., Jander, G. and Casas, J. L. 2018. Changes in the free amino acid composition of Capsicum annuum (pepper) leaves in response to Myzus persicae (green peach aphid) infestation. A comparison with water stress. PLoS ONE 13:e0198093.
13 Huang, K., Jiang, Q., Liu, L., Zhang, S., Liu, C., Chen, H., Ding, W. and Zhang, Y. 2020. Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco root-knot nematodes. AMB Express 10:72.
14 Huang, X.-F., Chaparro, J. M., Reardon, K. F., Zhang, R., Shen, O. and Vivanco, J. M. 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267-275.   DOI
15 Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T. and Steinberg, C. 2007. Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol. Biochem. 39:1-23.   DOI
16 Kim, Y. C. and Anderson, A. J. 2018. Rhizosphere pseudomonads as probiotics improving plant health. Mol. Plant Pathol. 10:2349-2459.
17 Kinkel, L. L., Bakker, M. G. and Schlatter, D. C. 2011. A coevolutionary framework for managing disease-suppressive soils. Annu. Rev. Phytopathol. 49:47-67.   DOI
18 Kolde, R. 2019. pheatmap: pretty heatmaps. URL https://CRAN.R-project.org/package=pheatmap [17 October 2022].
19 Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Loffler, F. E., O'Malley, M. A., Garcia Martin, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R. and McMahon, K. D. 2019. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17:725-741.   DOI
20 Krzmarzick, M. J., Crary, B. B., Harding, J. J., Oyerinde, O. O., Leri, A. C., Myneni, S. C. and Novak, P. J. 2012. Natural niche for organohalide-respiring Chloroflexi. Appl. Environ. Microbiol. 78:393-401.   DOI
21 Li, M., Jiao, F., Zeng, J., Wang, B., Song, Z., Wu, X., Li, Y., Gao, Y. and Li, W. 2017. Resistance identification of different types of new tobacco varieties (lines) to Meloidogyne incognita. Tob. Sci. Technol. 50:22-26 (in Chinese).
22 Liu, T. T., Lu, Q. F., Wang, N. Q. 2019. The rhizosphere regulation mechanism and use of root exudates to inhibit continuous monocropping barrier by nematode disease. J. Plant Nutr. Fertil. 25:1038-1046.
23 Liu, X. L. 2011. Infection mechanism of Paecilomyces lilacinus strains on Meloidogyne incognita. Ph.D. thesis. Anhui Agricultural University, Hefei, China.
24 Megguer, C. A., Fugate, K. K., Lafta, A. M., Ferrareze, J. P., Deckard, E. L., Campbell, L. G., Lulai, E. C. and Finger, F. L. 2017. Glycolysis is dynamic and relates closely to respiration rate in stored sugarbeet roots. Front. Plant Sci. 8:861.
25 Mendes, L. W., Tsai, S. M., Navarrete, A. A., de Hollander, M., van Veen, J. A. and Kuramae, E. E. 2015. Soil-borne microbiome: linking diversity to function. Microb. Ecol. 70:255-265.   DOI
26 Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G. and Renella, G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54:655-670.   DOI
27 Schlatter, D., Fubuh, A., Xiao, K., Hernandez, D., Hobbie, S. and Kinkel, L. 2009. Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb. Ecol. 57:413-420.   DOI
28 Norabadi, M. T., Sahebani, N. and Etebarian, H. R. 2014. Biological control of root-knot nematode (Meloidogyne javanica) disease by Pseudomonas fluorescens (Chao). Arch. Phytopathol. Plant Prot. 47:615-621.   DOI
29 Philippot, L., Raaijmakers, J. M., Lemanceau, P. and van der Putten, W. H. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11:789-799.   DOI
30 Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. and Moenne-Loccoz, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341-361.   DOI
31 Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S. and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60.
32 She, S., Niu, J., Zhang, C., Xiao, Y., Chen, W., Dai, L., Liu, X. and Yin, H. 2017. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Arch. Microbiol. 199:267-275.   DOI
33 Siddiqui, I. A. and Shaukat, S. S. 2002. Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol. Fertil. Soils 36:260-268.   DOI
34 Song, L., Zhou, P.-P., Li, Y., Zhang, L.-M., Zhao, J.-L., Zhang, G.-P., Luo, X.-L., Na, H.-Y, Liu, F., Gu, X.-H. and Ruan, W.-B. 2019. Distribution of Meloidogyne spp. in tobacco field of Yuxi, Yunnan Province and biological control against Meloidogyne spp. J. Agric. Resour. Environ. 36:546-552 (in Chinese).
35 Wang, G. H., Liu, J. J., Yu, Z. H., Wang, X. Z., Jin, J. and Liu, X. B. 2016. Research progress of Acidobacteria ecology in soils. Biotechnol. Bull. 32:14-20 (in Chinese).
36 Stackebrandt, E. and Goebel, B. M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846-849.   DOI
37 Stirling, G. R., Rames, E., Stirling, A. M. and Hamill, S. 2011. Factors associated with the suppressiveness of sugarcane soils to plant-parasitic nematodes. J. Nematol. 43:135-148.
38 Tian, B.-Y., Cao, Y. and Zhang, K.-Q. 2015. Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci. Rep. 5:17087.
39 Wang, J. and Kong, F. 2002. Integrated control technique of tobacco root-knot nematodes diseases. Tob. Sci. Technol. 9:43-44 (in Chinese).
40 Wang, Q., Garrity, G. M., Tiedje, J. M. and Cole, J. R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267.   DOI
41 Wang, R., Zhang, H., Sun, L., Qi, G., Chen, S. and Zhao, X. 2017. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci. Rep. 7:343.
42 Wang, W. N., Quan, X. J. and Xiao, C. G. 2010. Research advances on application and mechanism of induced resistance of plant. Hubei Agric. Sci. 49:204-206.   DOI
43 Wei, H., Wang, L., Hassan, M. and Xie, B. 2018. Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresour. Technol. 256:333-341.   DOI
44 Yan, X. N. 2003. Screening of Actinomycetes strains producing secondary metaboletes with nematicidal activity. PhD dissertation. Nanjing Agricultural University, Nanjing, China (in Chinese).
45 Wieland, G., Neumann, R. and Backhaus, H. 2001. Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl. Environ. Microbiol. 67:5849-5854.   DOI
46 Xie, C.-H. and Yokota, A. 2006. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int. J. Syst. Evol. Microbiol. 56:889-893.   DOI
47 Yan, M., Chen, S., Huang, T., Li, B., Li, N., Liu, K., Zong, R., Miao, Y. and Huang, X. 2020. Community compositions of phytoplankton and eukaryotes during the mixing periods of a drinking water reservoir: dynamics and interactions. Int. J. Environ. Res. Public Health 17:1128.
48 Zhang, S., Wang, Y., Sun, L., Qiu, C., Ding, Y., Gu, H., Wang, L., Wang, Z. and Ding, Z. 2020. Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. BMC Microbiol. 20:103.
49 Zheng, Y.-X., Yang, M., Wu, J.-G., Wang, J.-M., Xu, Y.-L., Yan, D., Cai, X.-J., Tong, W.-J., Chen, X.-L., Cai, Y.-Z., Yu, L. and He, Y.-S. 2021. Study on interaction between bacterial community and microecological environment in rhizosphere soil of tobacco root rot caused by Fusarium solani. Mater. Express 11:166-173.
50 Zuckerman, M. and Kuhlman, D. M. 2000. Personality and risk-taking: common bisocial factors. J. Pers. 68:999-1029.   DOI