• Title/Summary/Keyword: structural system identification

Search Result 510, Processing Time 0.036 seconds

Variability analysis on modal parameters of Runyang Bridge during Typhoon Masta

  • Mao, Jian-Xiao;Wang, Hao;Xun, Zhi-Xiang;Zou, Zhong-Qin
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.653-663
    • /
    • 2017
  • The modal parameters of the deck of Runyang Suspension Bridge (RSB) as well as their relationships with wind and temperature are studied based on the data recorded by its Structural Health Monitoring System (SHMS). Firstly, frequency analysis on the vertical responses at the two sides of the deck is carried out to distinguish the vertical and torsional vibration modes. Then, the vertical, torsional and lateral modal parameters of the deck of RSB are identified using Hilbert-Huang Transform (HHT) and validated by the identified results before RSB was opened to traffic. On the basis of this, the modal frequencies and damping ratios of RSB during the whole process of Typhoon Masta are obtained. And the correlation analysis on the modal parameters and wind environmental factors is then conducted. Results show that the HHT can achieve an accurate modal identification of RSB and the damping ratios show an obvious decay trend as the frequencies increase. Besides, compared to frequencies, the damping ratios are more sensitive to the environmental factors, in particular, the wind speed. Further study on configuring the variation law of modal parameters related with environmental factors should be continued.

A Study on the Facal motion and for Detection of area Using Kalman Fillter algorithm (Facal motion 예측 및 영역 검출을 위한 칼만 필터 알고리즘)

  • Seok, Gyeong-Hyu;Park, Bu-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.973-980
    • /
    • 2011
  • In this paper, we gaze upon the movement faces the problem points are difficult to identify a user based on points and that corrective action is needed to solve the identification system is proposed a new eye. Kalman filter, the current head of the location information was used to estimate the future position in order to determine the authenticity of the face facial features and structural elements, the information and the processing time is relatively fast horizontal and vertical elements of the face using the histogram analysis to detect. And an infrared illuminator obtained by constructing a bright pupil effect in real-time detection of the pupil, the pupil was tracked - geulrinteu vectors are extracted.

A Study on the Improvement of Radiated Noise in SCR Muffler of Commercial Vehicle (상용차용 SCR 머플러의 방사소음 개선에 관한 연구)

  • Lee, Dong-Won;Kim, Wan-Su;Bae, Chul-Yong;Kim, Chan-Jung;Kwon, Sung-Jin;Lee, Bong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.816-822
    • /
    • 2008
  • This study presents the design modification for SCR muffler of a commercial vehicle. Its main objective is the reduction of radiated noise at SCR muffler. For this study, the research of five steps were achieved by experimental and CAE analysis. First step is the measurement of radiated noise using impact-acoustic test. Second step is the source identification using experimental modal analysis. The cause of radiated noise source is confirmed by the resonance of end plates at SCR muffler. Third step confirms the possibility of resonance avoidance using SDM analysis applied the mass control. Fourth step is the suggestion of design modification which is the change of mode shape by CAE analysis. Last step is the verification of design modification using SYSNOISE analysis. Finally, the prototype product applied the countermeasure of resonance evasion was manufactured and the reduction of radiated noise at SCR muffler was confirmed by pass-by noise test.

Identification of Fuzzy System Driven to Parallel Genetic Algorithm (병렬유전자 알고리즘을 기반으로한 퍼지 시스템의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.201-203
    • /
    • 2007
  • The paper concerns the successive optimization for structure and parameters of fuzzy inference systems that is based on parallel Genetic Algorithms (PGA) and information data granulation (IG). PGA is multi, population based genetic algorithms, and it is used tu optimize structure and parameters of fuzzy model simultaneously, The granulation is realized with the aid of the C-means clustering. The concept of information granulation was applied to the fuzzy model in order to enhance the abilities of structural optimization. By doing that, we divide the input space to form the premise part of the fuzzy rules and the consequence part of each fuzzy rule is newly' organized based on center points of data group extracted by the C-Means clustering, It concerns the fuzzy model related parameters such as the number of input variables to be used in fuzzy model. a collection of specific subset of input variables, the number of membership functions according to used variables, and the polynomial type of the consequence part of fuzzy rules, The simultaneous optimization mechanism is explored. It can find optimal values related to structure and parameter of fuzzy model via PGA, the C-means clustering and standard least square method at once. A comparative analysis demonstrates that the Dnmosed algorithm is superior to the conventional methods.

  • PDF

Antagonism and Structural Identification of Antifungal Compound from Chaetomium cochliodes against Phytopathogenic Fungi

  • Kang, Jae Gon;Kim, Keun Ki;Kang, Kyu Young
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.146-150
    • /
    • 1999
  • As a part of the integrated disease system in greenhouse, an antifungal fungus(AF1) was isolated from greenhouse soil. It exhibited strong inhibitory activites against Pythium ultimum, Phytophtora capsici, Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum based on dual culture on 1/5 strength of potato dextrose agar between antagonistic fungus and several plant pathogens. The antagonistic fungus was identified as Chaetomium cochliodes, based on morphological characteristics; the body of the perithecium bears straight or slightly wavy, unbranched hairs, whilst the apex bears a group of spirally coiled hairs. To investigate antagonistic principles, antifungal compound was extracted and fractionated by different solvent systems. An antifungal compound was isolated as pure crystal from is culture filtrate using organic solvent extraction and column chromatography, followed by preparative thin layer chromatography. The chemical structure of the purified antifungal compound was identified as chaetoglobosin A based on the data obtained form $^1H-NMR$, $^{13}C-NMR$, DEPT 90, 135, $^1H-^1H$ COSY, $^1H-^{13}C$ COSY and EI/MS. $ED_{50}$ values of the chaetoglobosin A against P. ultimum, P. capsici, R. solani, B. cinerea and F. oxysporum were 1.98, 4.01, 4.16, 2.67 and 35.14 ppm, respectively.

  • PDF

Modal Parameter Estimations of Wind-Excited Structures based on a Rational Polynomial Approximation Method (유리분수함수 근사법에 기반한 풍하중을 받는 구조물의 동특성 추정)

  • Kim, Sang-Bum;Lee, Wan-Soo;Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.287-292
    • /
    • 2005
  • This paper presents a rational polynomial approximation method to estimate modal parameters of wind excited structures using incomplete noisy measurements of structural responses and partial measurements of wind velocities only. A stochastic model of the excitation wind force acting on the structure is estimated from partial measurements of wind velocities. Then the transfer functions of the structure are approximated as rational polynomial functions. From the poles and zeros of the estimated rational polynomial functions, the modal parameters, such as natural frequencies, damping ratios, and mode shapes are extracted. Since the frequency characteristics of wind forces acting on structures can be assumed as a smooth Gaussian process especially around the natural frequencies of the structures according to the central limit theorem (Brillinger, 1969; Yaglom, 1987), the estimated modal parameters are robust and reliable with respect to the assumed stochastic input models. To verify the proposed method, the modal parameters of a TV transmission tower excited by gust wind are estimated. Comparison study with the results of other researchers shows the efficacy of the suggested method.

  • PDF

Hilbert transform based approach to improve extraction of "drive-by" bridge frequency

  • Tan, Chengjun;Uddin, Nasim
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.265-277
    • /
    • 2020
  • Recently, the concept of "drive-by" bridge monitoring system using indirect measurements from a passing vehicle to extract key parameters of a bridge has been rapidly developed. As one of the most key parameters of a bridge, the natural frequency has been successfully extracted theoretically and in practice using indirect measurements. The frequency of bridge is generally calculated applying Fast Fourier Transform (FFT) directly. However, it has been demonstrated that with the increase in vehicle velocity, the estimated frequency resolution of FFT will be very low causing a great extracted error. Moreover, because of the low frequency resolution, it is hard to detect the frequency drop caused by any damages or degradation of the bridge structural integrity. This paper will introduce a new technique of bridge frequency extraction based on Hilbert Transform (HT) that is not restricted to frequency resolution and can, therefore, improve identification accuracy. In this paper, deriving from the vehicle response, the closed-form solution associated with bridge frequency removing the effect of vehicle velocity is discussed in the analytical study. Then a numerical Vehicle-Bridge Interaction (VBI) model with a quarter car model is adopted to demonstrate the proposed approach. Finally, factors that affect the proposed approach are studied, including vehicle velocity, signal noise, and road roughness profile.

Phytochemical constituents from the aerial parts of Salvia plebeia

  • Paje, Leo Adrianne;Lee, Hak-Dong;Choi, Jungwon;Kim, Juree;Kim, Ki Hyun;Yu, A Ram;Bae, Min-Jung;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.391-397
    • /
    • 2021
  • Four compounds were isolated from Salvia plebeia aerial parts. Silica gel open column chromatography with a gradient elution system was used to isolate and purify these compounds. Nuclear magnetic resonance spectroscopy and mass spectroscopy were used for structural elucidation and identification, while electronic circular dichroism was used to confirm the absolute configuration. The structures were determined to be 𝛽-sitosterol (1), (-)-1S,5S,8S,10R-1-acetoxy-8-hydroxy-2-oxoeudesman-3,7(11)-dien-8,12-olide (2), ursolic acid (3), and N-methylhydroxylamine (4). Compounds 2 and 4 were isolated for the first time from this plant. Compound 2 was quantitatively analyzed via HPLC/UV. The results showed that the methanol extract of S. plebeia had a higher content of compound 2 (1.20 mg/g) than the ethanol extract (0.55 mg/g). This study could be used as a preliminary step in conducting HPLC/UV analysis of sesquiterpenoids in S. plebeia extract to assess their bioavailability and potency.

Computer vision monitoring and detection for landslides

  • Chen, Tim;Kuo, C.F.;Chen, J.C.Y.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.161-171
    • /
    • 2019
  • There have been a few checking frameworks intended to ensure and improve the nature of their regular habitat. The greater part of these frameworks are constrained in their capacities. In this paper, the insightful checking framework intended for debacle help and administrations has been exhibited. The ideal administrations, necessities and coming about plan proposition have been indicated. This has prompted a framework that depends fundamentally on ecological examination so as to offer consideration and security administrations to give the self-governance of indigenous habitats. In this sense, ecological acknowledgment is considered, where, in light of past work, novel commitments have been made to help include based and PC vision situations. This epic PC vision procedure utilized as notice framework for avalanche identification depends on changes in the normal landscape. The multi-criteria basic leadership strategy is used to incorporate slope data and the level of variety of the highlights. The reproduction consequences of highlight point discovery are shown in highlight guide coordinating toward discover steady and coordinating component focuses and effectively identified utilizing these two systems, by examining the variety in the distinguished highlights and the element coordinating.

Condition assessment of bridge pier using constrained minimum variance unbiased estimator

  • Tamuly, Pranjal;Chakraborty, Arunasis;Das, Sandip
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.319-344
    • /
    • 2020
  • Inverse analysis of non-linear reinforced concrete bridge pier using recursive Gaussian filtering for in-situ condition assessment is the main theme of this work. For this purpose, minimum variance unbiased estimation using unscented sigma points is adopted here. The uniqueness of this inverse analysis lies in its approach for strain based updating of engineering demand parameters, where appropriate bound and constrained conditions are introduced to ensure numerical stability and convergence. In this analysis, seismic input is also identified, which is an added advantage for the structures having no dedicated sensors for earthquake measurement. First, the proposed strategy is tested with a simulated example whose hysteretic properties are obtained from the slow-cyclic test of a frame to investigate its efficiency and accuracy. Finally, the experimental test data of a full-scale bridge pier is used to study its in-situ condition in terms of Park & Ang damage index. Overall the study shows the ability of the augmented minimum variance unbiased estimation based recursive time-marching algorithm for non-linear system identification with the aim to estimate the engineering damage parameters that are the fundamental information necessary for any future decision making for retrofitting/rehabilitation.