• Title/Summary/Keyword: structural safety evaluation criteria

Search Result 103, Processing Time 0.027 seconds

A Study on the Durability Evaluation Criteria for the Vertical Extension Remodeling of Apartment (수직 중축형 리모델링 안전진단 내구성 평가기준 합리화에 관한 연구)

  • Yoon, Sang-Chun;Shin, Dong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.197-205
    • /
    • 2020
  • In 2014, The Housing Act amended to allows vertical extension and increases the units of housing (or total floor area) to site. Currently, the feasibility of performing vertical extension is evaluated based on safety diagnosis provisions and manuals with 1st investigation stage on slope, uneven settlement, load-bearing capacity, and durability. However, a need for more reasonable evaluation criteria for the investigation is still required because there had not been any other case study on the diagnosis for the vertical extension, and the engineering basis on evaluation criteria were not suggested. Accordingly, this study is intended to suggest feasible evaluation criteria on the carbonation, chloride ion contents, corrosion of reinforcements, crack and surface deterioration of concrete for durability assessment by codes and standards of domestic and foreign countries. The results of this study are expected to be beneficial for establishing more reasonable durability evaluation criteria, and in turn, more reliable assessment protocol for vertical extension.

Assessment of Structural Safety of Buried Water Mains (매설관의 구조적 안전성 평가에 관한 연구)

  • Bae, Chul-Ho;Kim, Ju-Hwan;Kim, Jung-Hyun;Hong, Sung-Ho;Lee, Kyung-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.151-164
    • /
    • 2007
  • Criteria for rehabilitation priority are discussed to evaluate structural stability of deteriorated water transport and transmission pipes, in this study. For the purposes, safety factor is introduced and estimated by measuring tensile strength and by analyzing stress caused by the internal-external loads working on buried pipe body. Related informations are surveyed and collected under various conditions in the fields by digging out and the structural stability is assessed. In the evaluation results of structural safety, it is shown that steel pipe is more affected by external load than internal load. The average external load is estimated as $53.7kg/cm^2$ and total hoop stress is estimated by $2676.5kg/cm^2$. Also, Poisson effect into longitudinal direction due to internal and external loads is most influential on hoop stress. The calculated safety factors of hoop stress are ranged from 0.7 to 5.2 with average value of 2.1, considering a bending stress to longitudinal direction. The decision of rehabilitation priority by safety factors show that structural safety of CIP sample 1(S1) was assessed at the lowest order with safety factor value, 0.7 and that of DI sample 15(S15) was evaluated as the most stable in structural aspect.

Probabilistic Analysis of Equivalent Uniformly Distributed live toads (등가등분포 적재하중의 확률론적 분석)

  • 김상효;정시현;조형근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.1-4
    • /
    • 1989
  • Since 1960's, structural engineers have recognized that tile inherent random nature of loadings and materials as well as the imperfect structural analysis may be important factors in tile structural safety evaluation. Based on the successful developments of the reliability based structural analysis and design, the design criteria of tile standards are recently developed(or modified) in the light of the probabilistic concepts. To develop the probability-based design criteria for tile domestic buildings, the probabilistic characters of loadings acting on structures should be defined first. In this study, therefore, live load data on apartment buildings have collected and analyzed in a systematic manner, and their probabilistic characteristics have been studied. Based oil the results, the lifetime extreme values are computed and compared with current design loads. More rational design loads are suggested, which are more consistent in the probabilistic concepts.

  • PDF

Longitudinal Ultimate Strength Analysis of Aluminum Alloy Ship Structures (알루미늄합금 선체의 최종 종강도에 대한 해석)

  • 백점기;이제명;박철민;박영일;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.254-261
    • /
    • 2004
  • Until now, there are different kinds of design and evaluation method criteria for ship hulls and ship strength based on allowable stress design using past experiences. But for many sinking accidents of large ships in operation, it has also a doubt about allowable stress design. It is recognized that structural plastic collapse caused by large external force is a main cause of that accidents. Therefore, there is the need for new design criteria based on ultimate limit state with a consideration about progressive collapse behavior as a safety assessment of ship hulls. Also many aluminum alloy ships is built for the purposes of lightweight of ship hulls, with that, a developing of criteria based on ultimate limit state should be made. In this study, the ultimate strength characteristics of aluminum ship hull are investigated by the ALPS/USAS program using already developed design formula for aluminum plate and stiffened panel.

  • PDF

Structural Evaluation of Spent Fuel Dry Storage Cask (사용후연료 건식 저장용기의 구조평가)

  • 서기석;이재한;강경훈;박성원;정성환
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.627-631
    • /
    • 2003
  • In a various regulations and standards related to the spent fuel storage, the storage casks should be designed to sustain the structural integrity under the accident conditions of predicted operation and design criteria. These conditions for the structural evaluation requires the drop, tip-over, wind like tornado and typhoon, flood and earthquake. This paper describes the load cases and conceptual evaluation method for the structural evaluation. Preliminary safety analysis of the concrete storage system were peformed.

  • PDF

Research on serviceability indicators and evaluation method for the revision of Special Act on Safety and maintenance of facilities (시특법 개정을 위한 서비스 성능 지표 설정 및 평가 방법 연구)

  • Park, Taeil;Park, Wonyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.312-313
    • /
    • 2018
  • As global climate change leaded to extensive natural disaster and radical deterioration of infrastructures, there was increased attentions for the evaluation of infrastructures. After the collapse of Seongsu Bridge in 1994, Korea has enacted the "Special act on safety and maintenance of facilities" and secured the safety of facilities using systematic and periodic safety inspections. However, current facility inspections are mainly performed by the physical defect and structural analysis, and do not properly consider the serviceability of infrastructure such as capacity of facility and user's satisfaction. Thus, the purpose of the study is to develop an evaluation criteria for serviceability of infrastructures and finally leading to the revision of "Special Act on safety and maintenance of facilities in rational manner.

  • PDF

Analysis of Structural Safety for Rebar Exposure and Corrosion in PSC I-Girder Bridge Slab (PSC I형 교량 바닥판의 철근노출 및 부식에 대한 구조적 안전성 분석)

  • Han, Manseok;Park, Ju-Hyun;Lee, Jong-Han;Min, Jiyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2021
  • This paper evaluated the structural safety of an aging PSC I-girder bridge with rebar corrosion in the deck. The geometry and rebar of the bridge were designed based on an actual PSC I-girder bridge, and the numerical analysis was performed considering the crack of concrete and yielding of steel rebar. According to the evaluation criteria of Korea Infrastructure Safety and Technology Corporation, this study defined two criteria of rebar exposure and corrosion rates to construct a total of 32 corrosion scenarios. Rebar exposure was defined as the exposure of tensile rebars in the bridge deck due to the removal of cover concrete. The results of the analysis showed that the safety and rating factors of the bridge decreased with increasing rebar exposure and corrosion rates. For the rebar corrosion rate more than 50%, the safety grade of the bridge should be carefully evaluated for all the rebar exposure rate. When the rebar corrosion rate exceeds 57%, the bridge was evaluated as E grade regardless of rebar exposure rate. A correlation analysis for a 2% of rebar exposure rate found that the bridge was evaluated as A grade up to 55.8% corrosion rate, C grade up to 56.9%, D grade up to 58.5%, and E grade for corrosion rate greater than 58.5%. This study indicates the necessity of a quantitative evaluation of rebar corrosion for evaluating the structural safety of aging bridges.

A Study on Safety Evaluation Methods for Electric Multiple Units (도시철도차량의 안전진단평가 기법에 관한 연구)

  • Chung J.D.;Han S.Y;Park K.J.;Park O.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.374-377
    • /
    • 2005
  • Automobile is in charge of most transportation system in modern urban city. However, in fact, cause of problem of road state, environment, and the other reasons, urban transit system is using as Mass Transit nowadays. Nevertheless Urban transit system is considering many kind of safety fact of that system which is increasing continuously nowadays, it occurs various train accident. This paper describes 3D Dimensional Measurement(EDM testing) and tensile testing results of carbody structure for crashed EMU(Electric Multiple Units). Tensile tests were performed on two different types of specimens in order to evaluate the strength changes before and after damages, obtained from plastic deformed area and nondeformed region of the crashed EMU. And Structural analysis of EMU was performed for the criteria of safety assessment. Structural analysis using commercial I-DEAS software provided important information on the stress distribution and load transfer mechanisms as well as the amount of damages during rolling stock crash. The testing results have been used to provide the critical information for the criteria of safety diagnosis.

  • PDF

Pontoon Type Design and Structural Safety Estimation (폰툰형 플랫폼 설계 및 구조안전성 평가)

  • Seo, Kwang-Cheol;Oh, Jung-Mo;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.604-610
    • /
    • 2018
  • Recently, due to the rapid growth of the leisure industry, demand for small-scale flotation and mooring pontoon platforms has been increasing rapidly. Standard rules for the design and structural safety of such structures have become necessary. This paper provides criteria that can be referenced when designing pontoon platforms, and also introduces structural safety evaluation procedures. In this study, the structural safety and stability of a 15-meter pontoon platform were investigated through structural design and finite element analysis. For platforms of less than 10 meters in length, a simple structural calculation can be used, but for platforms over 10 meters, a detailed structural strength review must be considered to meet safety guidelines defined in existing regulations. The structural strength of the initial design was examined and its structural safety was verified. For future research, it is an evaluative system was developed that can be used to examine the various loading conditions during design.

Direct strength evaluation of the structural strength of a 500 cbm LNG bunkering ship

  • Muttaqie, Teguh;Jung, DongHo;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.781-790
    • /
    • 2022
  • The present paper describes a general procedure of the structural safety assessment for the independent type C tank of LNG bunkering ship. This strength assessment procedure consists of two main scheme, global Finite Element Analysis (FEA) model primarily for hull structure assessment and detailed LNG Tank structures FEA model including the cylindrical tank itself and saddle-support structures. Two kinds of mechanism are used, fixed and slides constraints in fore and rear of the saddle-support structures that result in a variation of the reaction forces. Finite Element (FE) analyses have been performed and verified by the strength acceptance criteria to evaluate the safety adequacy of yielding and buckling of the hull and supporting structures. The detail of FE model for an LNG type C tank and its saddle supports was made, which includes the structural members such as cylindrical tank shell, ring stiffeners, swash bulkhead, and saddle supports. Subsequently, the FE buckling analysis of the Type C tank has been performed under external pressure following International Gas Containment (IGC) code requirements. Meanwhile, the assessment is also performed for yielding and buckling strength evaluation of the cylindrical LNG tank according to the PD 5500 unfired fusion welded pressure vessels code. Finally, a complete procedure for assessing the structural strength of 500 CBM LNG cargo tank, saddle support and hull structures have been provided.