• Title/Summary/Keyword: structural rules

Search Result 347, Processing Time 0.021 seconds

A Design of Dynamically Simultaneous Search GA-based Fuzzy Neural Networks: Comparative Analysis and Interpretation

  • Park, Byoung-Jun;Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.621-632
    • /
    • 2013
  • In this paper, we introduce advanced architectures of genetically-oriented Fuzzy Neural Networks (FNNs) based on fuzzy set and fuzzy relation and discuss a comprehensive design methodology. The proposed FNNs are based on 'if-then' rule-based networks with the extended structure of the premise and the consequence parts of the fuzzy rules. We consider two types of the FNNs topologies, called here FSNN and FRNN, depending upon the usage of inputs in the premise of fuzzy rules. Three different type of polynomials function (namely, constant, linear, and quadratic) are used to construct the consequence of the rules. In order to improve the accuracy of FNNs, the structure and the parameters are optimized by making use of genetic algorithms (GAs). We enhance the search capabilities of the GAs by introducing the dynamic variants of genetic optimization. It fully exploits the processing capabilities of the FNNs by supporting their structural and parametric optimization. To evaluate the performance of the proposed FNNs, we exploit a suite of several representative numerical examples and its experimental results are compared with those reported in the previous studies.

A Parser of Definitions in Korean Dictionary based on Probabilistic Grammar Rules (확률적 문법규칙에 기반한 국어사전의 뜻풀이말 구문분석기)

  • Lee, Su Gwang;Ok, Cheol Yeong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.5
    • /
    • pp.448-448
    • /
    • 2001
  • The definitions in Korean dictionary not only describe meanings of title, but also include various semantic information such as hypernymy/hyponymy, meronymy/holonymy, polysemy, homonymy, synonymy, antonymy, and semantic features. This paper purposes to implement a parser as the basic tool to acquire automatically the semantic information from the definitions in Korean dictionary. For this purpose, first we constructed the part-of-speech tagged corpus and the tree tagged corpus from the definitions in Korean dictionary. And then we automatically extracted from the corpora the frequency of words which are ambiguous in part-of-speech tag and the grammar rules and their probability based on the statistical method. The parser is a kind of the probabilistic chart parser that uses the extracted data. The frequency of words which are ambiguous in part-of-speech tag and the grammar rules and their probability resolve the noun phrase's structural ambiguity during parsing. The parser uses a grammar factoring, Best-First search, and Viterbi search In order to reduce the number of nodes during parsing and to increase the performance. We experiment with grammar rule's probability, left-to-right parsing, and left-first search. By the experiments, when the parser uses grammar rule's probability and left-first search simultaneously, the result of parsing is most accurate and the recall is 51.74% and the precision is 87.47% on raw corpus.

Development of an Automated Design Algorithm for the Longitudinal Members of Oil Tankers based on H-CSR (H-CSR 기반 유조선 종강도 부재의 설계 자동화 알고리즘 개발)

  • Park, Chan-im;Jeong, Sol;Song, Ha-cheol;Na, Seung-soo;Park, Min-cheol;Shin, Sang-hoon;Lee, Jeong-youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.503-513
    • /
    • 2016
  • In order to reduce the green-house gas exhaustion, International Maritime Organization (IMO) has been reinforcing carbon gas regulations. Due to the regulations, a lot of competitions for designing Eco ship in the shipbuilding industry are progressing now. It is faced with the necessity of reducing hull weight by combining automated systems for optimal compartment arrangement with hull structural design. Most researches on optimum structural design method have been consistently in progress and applied to minimize weight and cost of mid-ship section in preliminary ship design stage based on analytical structural analysis method on fixed compartment arrangement. In order to reduce design period and to improve international technical competitiveness by shortening the period of hull structural design and enhancing design accuracy, it has been felt necessity to combine optimized compartment arrangement with optimum design of ship structure based on the international regulations and rules. So in this study, the automated design algorithm for longitudinal members has been developed to combine automated algorithm of compartment arrangement with hull structural design system for oil tanker. The SeaTrust-Hullscan software developed by Korean Register is used to perform ship structural design for mother ship and selected design cases. The effect of weight reduction is verified with comparison of ship weight between mother ship and the cases suggested in this study.

Examination of Root Causes of Buckling in the Stern Structure of an Oil Tanker using Numerical Modeling (수치해석 모델링을 이용한 유조선 선미부 구조에 발생한 좌굴 발생 원인 검토)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1259-1266
    • /
    • 2022
  • Recently, due to the specialization of structural design standards and evaluation methods, the classification rules are being integrated. A good example is the common international rules (CSR). However, detailed regulations are presented only for the cargo hold area where the longitudinal load is greatly applied, and no specific evaluation guidelines exist for the bow and stern structures. Structural design of the mentioned area is carried out depending on the design experience of the shipbuilder, and because no clear standard exists even in the classification, determining the root cause is difficult even if a structural damage problem occurs. In this study, an engineering-based solution was presented to identify the root cause of representative cases of buckling damage that occurs mainly in the stern. Buckling may occur at the panel wall owing to hull girder bending moment acting on the stern structure, and the plate thickness must be increased or vertical stiffeners must be added to increase the buckling rigidity. For structural strength verification based on finite element analysis modeling, reasonable solutions for load conditions, boundary conditions, modeling methods, and evaluation criteria were presented. This result is expected to be helpful in examining the structural strength of the stern part of similar carriers in the future.

Development of Expert System for Tower Cranes

  • Kim, Ki-sung;Kang, Dong-gil;Hong, Ki-sup
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.2
    • /
    • pp.27-48
    • /
    • 1999
  • The paper is concerned with application to develop the expert system, which structural analysis and design process for tower cranes. The system is organized into three groups. One is pre-processor for creating input data files, another is `model former' which combines knowledge-base with inference engine for automatic generating structural analysis models, a third is application group for final analysis checks. In this study, geometric subroutine of `model former' designates node positions, nodes, elements numbers and element types. Load data subroutine computes weight of tower crane and device, slewing force, cargo load, wind force form rules or equations in knowledge-base. Also, Property and boundary subroutine applies element properties and boundary conditions to suitable elements and nodes. Design and analysis expert system for tower crane integrates these subroutine, `model former' and pre-processor. RBR(Rule-Base Reasoning) was adopted for a reasoning strategy of this expert system. And this expert system can produce structural analysis model and data, which can be used in ordinary structural analysis program (SAP, ADINA or NASTRAN, etc.). In this paper, this expert system produces format of the analysis model data, which are used in MSC/NASTRAN. The main discussions included in the paper are introduction of the tower crane and structural analysis, composition of the design expert system for tower crane and structural analysis using the expert system.

  • PDF

Structural robustness: A revisit

  • Andre, Joao
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.193-205
    • /
    • 2020
  • The growing need for assuring efficient and sustainable investments in civil engineering structures has determined a renovated interest in the rational design of such structures from designers, clients and authorities. As a result, risk-informed decision-making methodologies are increasingly being used as a direct decision tool or as an upper-level layer from which performance-based approaches are then calibrated against. One of the most important and challenging aspects of today's structural design is to adequately handle the system-level effects, the known unknowns and the unknown unknowns. These aspects revolve around assessing and evaluating relevant damage scenarios, namely those involving unacceptable/intolerable damage levels. Hence, the importance of risk analysis of disproportionate collapse, and along with it of robustness. However, the way robustness has been used in modern design codes varies substantially, from simple provisions of prescriptive rules to complex risk analysis of the disproportionate collapse. As a result, implementing design for robustness is still very much a grey area and more so when it comes to defining means to quantify robustness. This paper revisits the most common robustness frameworks, highlighting their merits and limitations, and identifies one among them which is very promising as a way forward to solve the still open challenges.

Structural performance of cold-formed steel column bases with bolted moment connections

  • Chung, K.F.;Yu, W.K.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.325-340
    • /
    • 2005
  • This paper presents a thorough investigation into the structural performance of cold-formed steel column bases using double lipped C sections with bolted moment connections. A total of four column base tests with different connection configurations were carried out, and it was found that section failure under combined bending and shear was always critical. Moreover, the proposed column bases were demonstrated to be structurally efficient attaining moment resistances close to those of the connected sections. In order to examine the structural behaviour of the column base connections, a finite element model was established using shell and spring elements to model the sections and the bolted fastenings respectively. Both material and geometrical non-linearities were incorporated, and comparison between the test and the numerical results was presented in details. The design rules originally developed for bolted moment connections between lapped Z sections were adopted and re-formulated for the design of column base connections after careful calibration against the test data. Comparison on co-existing moments and shear forces at the critical cross-sections of the column bases was fully presented. It was shown that the proposed design and analysis method was structurally adequate to predict the failure loads under combined bending and shear for column bases with similar connection configurations.

Structural performance of cold-formed steel column bases with bolted moment connections

  • Chung, K.F.;Yu, W.K.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2005
  • This paper presents a thorough investigation into the structural performance of cold-formed steel column bases using double lipped C sections with bolted moment connections. A total of four column base tests with different connection configurations were carried out, and it was found that section failure under combined bending and shear was always critical. Moreover, the proposed column bases were demonstrated to be structurally efficient attaining moment resistances close to those of the connected sections. In order to examine the structural behaviour of the column base connections, a finite element model was established using shell and spring elements to model the sections and the bolted fastenings respectively. Both material and geometrical non-linearities were incorporated, and comparison between the test and the numerical results was presented in details. The design rules originally developed for bolted moment connections between lapped Z sections were adopted and re-formulated for the design of column base connections after careful calibration against the test data. Comparison on co-existing moments and shear forces at the critical cross-sections of the column bases was fully presented. It was shown that the proposed design and analysis method was structurally adequate to predict the failure loads under combined bending and shear for column bases with similar connection configurations.

A Survey of Korean Firefighters Regarding their Satisfaction with Protective Clothing (한국 소방용 방화복에 대한 만족도 조사)

  • Han, Sul-Ah;Nam, Yun-Ja;Choi, Young-Lim
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.9
    • /
    • pp.166-175
    • /
    • 2008
  • For the structural firefighting protective clothing, it can show a synergy effect when it satisfies smart fabric to block off a harmful environmental element and ergonomics design that apply range of motion of human body and appropriate size system. There are various standards about the structural firefighting protective clothing, but it's difficult to find a rule about movement suitability because the performance of the material holds a lot of the rules. Therefore, the purpose of this study is to propose a scheme to evaluate the current structural firefighting protective clothing and to improve movement suitability by research on the actual condition. For this, the survey about wearer acceptability scale on design and size and about improvement requirements was executed gathering firefighters' opinion. Questionnaire was composed with 23 items about satisfaction on current structural firefighting protective clothing, body suitability, movement suitability, improvement requirement and subjective information. As a results, Korean firefighters demand ergonomics design of structural firefighting protective clothing which to minimize restriction of body movement and to maximize body suitability.

Redundancy Analysis of Stiffened Panel with Plastic Deformation due to Collision (충돌에 의한 소성변형을 갖는 보강판의 잉여강도 해석)

  • Yeom, Cheol Wung;Nho, In Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.161-169
    • /
    • 2015
  • According to SOLAS Regulation XII/6.5.3 and IMO GBS functional requirement(IMO, 2010), the structural redundancy of multi-bay stiffened panel in cargo area of bulk carrier should be provided enough in order to endure the initial design load though one bay of the stiffened panel is damaged due to plastic deformation or fatigue crack. To satisfy structural redundancy, Harmonized Common Structural Rules (hereinafter CSR-H, IACS, 2014) proposed to use 1.15 instead of 1.0 for buckling usage factor of stiffened panel in cargo area. This paper shows that buckling usage factor in CSR-H for structural redundancy is somewhat conservative considering the ultimate strength calculated by using nonlinear FEA for the damaged condition which is only one bay's plastic deformation due to colliding by weigh object like a bucket. Also, this paper presents that increasing of plate thickness only is more effective to get enough structural redundancy.