• 제목/요약/키워드: structural performance test

Search Result 2,163, Processing Time 0.029 seconds

Impact of Leader-Member Relationship Quality on Job Satisfaction, Innovation and Operational Performance: A Case in Vietnam

  • NGUYEN, Thanh Hung
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.6
    • /
    • pp.449-456
    • /
    • 2020
  • This study examines the relation between the quality of leader-member relationship and operational performance of processing enterprises employees in Vietnam, while job satisfaction and innovation are as a mediator variable. In depth interviews are first conducted with five managers and professional workers in five processing enterprises to determine the latent variables and build the structured questionnaire with observed variables. A quantitative survey with 438 employees and managers from 300 processing enterprises was carried out. The method of exploratory factor analysis (EFA), Cronbach's alpha analysis, and confirmatory factor analysis (CFA) was used to test the reliability, the convergent nature, and the consistency of the concepts. Structural equation modeling (SEM) is used to test the proposed model. The result shows that job satisfaction, innovation and operational performance have positive effects on the quality of leader-member relationship. The relationship between leaders and members had indirect impact on employee's operational performance via their job satisfaction and innovation, which illustrates a mediator role of job satisfaction and innovation for employees' performance. The findings of this study suggest that managers need to focus on developing relationship with employees to improve their satisfaction, innovation and performance.

Employee Engagement and Motivation as Mediators between the Linkage of Reward with Employee Performance

  • SISWANTO, Siswanto;MAULIDIYAH, Zahrotul;MASYHURI, Masyhuri
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.625-633
    • /
    • 2021
  • This study analyzes the impact of the reward variable on employees' performance through work motivation and employee engagement. This study's specific purpose is to investigate employee engagement's mediating role in the relationship between reward and employee performance. The sample of research is the employee at Sukorejo, Pasuruan Indonesia. The sample is permanent employees at manufacture corporate. The sample size is 150 employees of the total 759 workers through the calculation of the Slovin formula. Respondents in this study were employees with the criteria for having worked for at least last five years. The data obtained is in the form of answers from employees to the statements submitted. The data analysis was used structural equation modeling partial least square. To test the relationship between variables, it was equipped with a Sobel mediation test of statistics. SmartPLS 3.0 is used to help analyze the relationship between variables. The result shows that the reward does not have a direct influence on the performance of employees. However, it has a significant positive effect on the performance of employees through employee engagement. While working motivation variable does not have the role as a mediation variable related to the effect of reward on employee performance.

How Do Green Investment, Corporate Social Responsibility Disclosure, and Social Collaborative Initiatives Drive Firm's Distribution Performance?

  • PAMBUDI, Widiatmaka. F;DIAN, Wahdiana;Suherman, Suherman;LEONARDUS, Samodro Bintang A.M;Sukrisno, Sukrisno
    • Journal of Distribution Science
    • /
    • v.20 no.4
    • /
    • pp.51-63
    • /
    • 2022
  • Purposes: The purpose of this study is to develop and test a possible model that investigates the relationships between green investment, CSR disclosure, social collaboration initiatives, and firm distribution performance to deal with environmental change because it's become the major stakeholder since it affects increasingly global company performance index. Research methodology: In this study a quantitative method was adopted. The 220 respondents were owners and managers of manufacturing enterprises from Indonesia. The structural equation model (SEM) was used to test the hypotheses, and the Partial Least Square (SmartPLS) was used as the data analysis tool. Findings: The study's finding shows that green investment has a significant effect on CSR disclosure, and CSR disclosure has a positive relationship with social collaborative initiatives and the firm's distribution performance. Similarly, social collaborative initiatives also significantly impact a firm's distribution performance. Limitations: This study uses variables that are still abstract and have not been able to regress the dimensions contained there into conclusion variables for each antecedent variable. In addition, this study only used a sample with a small scope, namely Central Java Province, Indonesia. Contribution: The findings of this study contribute to the body of literature in the field of organizational management and support the agency and stakeholder theories. For the practical contribution, this study provides the way to build and implement green-based investment strategies as a competitive edge and improve firm's distribution performance.

Experiments on Flexural Performance of Composite Members Strengthened by External Steel Plates (외부 강재 보강으로 구성한 합성 부재의 휨 성능에 대한 실험)

  • Hwang, Byung-Hun;Shin, Jin-Won;Jeon, Jae-Ho;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.143-150
    • /
    • 2022
  • This paper presents an experimental study on the flexural performance of concrete members strengthened with external steel plates for the purpose of improving seismic performance. In order to strengthen the structure, a strengthening method was applied that wraps the walls and columns with steel members. The partial section of the wall with the longest span in the structure was manufactured in real size and the strengthening effect was confirmed by performing a static load test. As a result of the experiment, it was confirmed that the strengthened section exhibited sufficient flexural performance satisfied to the seismic requirements, but the behavior until failure was not obtained because of actuator capacity. It was confirmed that the strengthened member resists the out-of-plane moment with a composite behavior. It was verified that the stiffness and load carrying capacity of the strengthened member were improved compared to the non-strengthened member by displacement and strain measurements.

Fabrication Technique and Structural Performance Verification of PSC U-Type Segment Girder Using On-Site Pretension Method (현장 프리텐션 긴장 방식 적용 PSC U형 분절 거더 제작 기술 및 구조 성능 검증)

  • Sangki Park;Jaehwan Kim;Dong-Woo Seo;Ki-Tae Park;Hyun-Ock Jang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.3
    • /
    • pp.17-26
    • /
    • 2023
  • Prestressed Concrete (PSC) girders are divided into pre- and post-tension types as prestressing method, and I- and U-type as cross-sectional shape. There are both advantages and disadvantages depending on each prestressing method and cross-sectional shape, and each method is applied to bridge construction sites. In this study, a new girder design was attempted to develop that overcomes its shortcomings by using the pretension method and U-type cross sectional shape. Its structural performance was verified in this study. Pretension type girders are mainly manufactured in factories because they require a reaction arm and related facilities, and have the disadvantage of being limited in weight and span length for road transportation. In addition, in the case of the U-type cross-section, structural stability is very reliable during construction against overturning, but its own weight is relatively large comparing to I-type, and the post-tension method is mainly applied after on-site production. In this study, a PSC girder manufacturing method using the field pretension was proposed and a span length of 40 m real-scale test specimen was manufactured and verified its structural performance.

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

Effects of Welding Processes on the Low Temperature Impact Toughness of Structural Steel Welded Joints (용접방법에 따른 구조용강 용접 접합부의 저온 충격인성 특성)

  • Lee, Chin Hyung;Shin, Hyun Seop;Park, Ki Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.693-700
    • /
    • 2012
  • In this study, the Charpy impact test along with metallurgical observation was conducted to evaluate low temperature impact toughness of structural steel welds with different welding processes to find out the optimal welding process to guarantee the required impact toughness at low temperatures. The welding processes employed are shield metal arc welding (SMAW) and flux cored arc welding(FCAW), which are commonly used welding methods in construction. The Charpy impact test is a commercial quality control test for steels and other alloys used in the construction of metallic structures. The test allows the material properties for service conditions to be determined experimentally in a simple manner with a very low cost. To investigate the impact toughness at low temperatures of the steel welds, specimens were extracted from the weld metal and the heat affected zone. Standard V-notch Charpy specimens were prepared and tested under dynamic loading condition. The low temperature impact performance was evaluated based on the correlation between the absorbed energy and the microstructure. Analysis of the results showed that the optimal welding process to ensure the higher low temperature impact toughness of the HAZ and the weld metal is SMAW process using the welding consumable for steels targeted to low temperature use.

Performance Evaluation of Multi-Friction Dampers for Seismic Retrofitting of Structures (구조물 내진보강을 위한 다중 마찰댐퍼의 성능 평가)

  • Kim, Sung-Bae;Kwon, Hyung-O;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • This paper is a study on the friction damper, which is one of the seismic reinforcement devices for structures. This study developed a damper by replacing the internal friction material with ultra high molecular weight polyethylene (UHMWPE), a type of composite material. In addition, this study applied a multi-friction method in which the internal structure where frictional force is generated is laminated in several layers. To verify the performance of the developed multi-friction damper, this study performed a characteristic analysis test for the basic physical properties, wear characteristics, and disc springs of the material. As a result of the wear test, the mass reduction rate of UHMWPE was 0.003%, which showed the best performance among the friction materials based on composite materials. Regarding the disc spring, this study secured the design basic data from the finite element analysis and experimental test results. Moreover, to confirm the quality stability of the developed multi-friction damper, this study performed an seismic load test on the damping device and the friction force change according to the torque value. The quality performance test result showed a linear frictional force change according to the torque value adjustment. As a result of the seismic load test, the allowable error of the friction damper was less than 15%, which is the standard required by the design standards, so it satisfies the requirements for seismic reinforcement devices.

Implementation of a bio-inspired two-mode structural health monitoring system

  • Lin, Tzu-Kang;Yu, Li-Chen;Ku, Chang-Hung;Chang, Kuo-Chun;Kiremidjian, Anne
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.119-137
    • /
    • 2011
  • A bio-inspired two-mode structural health monitoring (SHM) system based on the Na$\ddot{i}$ve Bayes (NB) classification method is discussed in this paper. To implement the molecular biology based Deoxyribonucleic acid (DNA) array concept in structural health monitoring, which has been demonstrated to be superior in disease detection, two types of array expression data have been proposed for the development of the SHM algorithm. For the micro-vibration mode, a two-tier auto-regression with exogenous (AR-ARX) process is used to extract the expression array from the recorded structural time history while an ARX process is applied for the analysis of the earthquake mode. The health condition of the structure is then determined using the NB classification method. In addition, the union concept in probability is used to improve the accuracy of the system. To verify the performance and reliability of the SHM algorithm, a downscaled eight-storey steel building located at the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark structure. The structural response from different damage levels and locations was collected and incorporated in the database to aid the structural health monitoring process. Preliminary verification has demonstrated that the structure health condition can be precisely detected by the proposed algorithm. To implement the developed SHM system in a practical application, a SHM prototype consisting of the input sensing module, the transmission module, and the SHM platform was developed. The vibration data were first measured by the deployed sensor, and subsequently the SHM mode corresponding to the desired excitation is chosen automatically to quickly evaluate the health condition of the structure. Test results from the ambient vibration and shaking table test showed that the condition and location of the benchmark structure damage can be successfully detected by the proposed SHM prototype system, and the information is instantaneously transmitted to a remote server to facilitate real-time monitoring. Implementing the bio-inspired two-mode SHM practically has been successfully demonstrated.

Bi-directional response control of a building using one TLD (1 개의 TLD 를 이용한 건물의 양방향 진동제어)

  • Min, Kyung-Won;Lee, Sung-Kyung;Park, Eun-Churn
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.119-124
    • /
    • 2009
  • This paper proposes a tuned liquid column sloshing damper(TLCSD) and presents experimental results to evaluate its control performance. The proposed damper acts as a tuned liquid column damper(TLCD) and a tuned liquid damper(TLD), respectively, in both principal axes of building structures. Shaking table test was performed to grasp its dynamic characteristics. Testing results showed that under inclined incident excitations, a TLCSD used in this study have dynamic characteristics coupled by both TLCD and TLD.

  • PDF