• Title/Summary/Keyword: structural performance test

Search Result 2,156, Processing Time 0.027 seconds

Comparative Study on Test Methods for Mechanical Properties of Structural Adhesives Used in FRP Strengthening (구조보강용 FRP 함침·접착수지의 역학적 특성 분석을 위한 시험방법 비교 연구)

  • You, Young Chan;Choi, Ki Sun;Kim, Keung Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.103-112
    • /
    • 2008
  • Pull-off test is generally used to evaluate bond strength of FRP composite with concrete at job site. However, some damages on FRP composites can not be avoided during pull-off test and moreover test range of pull-off strength is limited by maximum tensile strength of concrete. Accordingly, it is required to set-up a test method that can evaluate mechanical properties of structural adhesive indirectly prior to pull-off test. In this study, the standard test methods for structural adhesive which can simply evaluate mechanical performance of adhesive were suggested through comparative experiments from each different standard in various countries. Particularly, gluing thickness of adhesive in tensile lap-shear tests, the section dimension of compression and bending test specimens become unified, and standard test specimen size is achieved by test results.

Structural Performance of H-shaped Column-Rafter Connection in the P.E.B Systematic Steel Frames (P.E.B 시스템 강골조에서 H형강 기둥 - Rafter 접합부의 구조성능)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.347-356
    • /
    • 2005
  • Recently, pre-engineering building (P.E.B.) systematic frames are increasingly being used in steel factory buildings, but almost of the related techniques are dependent on the engineering program (e.g, MBS, LTI), which is usually imported from other countries. These are designed under the AISC-ASD because at present there is no Korean design code for P.E.B. frames. Also, there are few studies onbehaviour and we need to develop the element techniques by using H-shaped components.In particular, there is a tendency towards overestimated design because column-rafter connections have been designed with extended end plate type joint, which is treated asrigid joint,so structural examinations are needed. Therefore, this study represents a basic step in ascertaining the application of P.E.B. systematic frames by using H-shaped column-rafter connectionwith flush type end plate. Its structural performance is compared with that of existing extended type joint using a structural performance test. The structural behaviour of specimen was understood qualitatively and the possibility of application (e.g, design aid charts) of semi-connection (flush type) with H-shaped column-rafter was determined.

Experimental Study on Structural Behavior of Joints for Precast Concrete Segment (프리캐스트 콘크리트 세그먼트 접합부의 구조거동에 관한 실험적 연구)

  • Lee, Young-Hak;Kim, Min-Sook;Jung, Bo-Na;Kim, Hee-Cheul;Kim, Kwan-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.59-65
    • /
    • 2009
  • The use of precast concrete segments facilitates quality control and reduces construction cost and period. However, as a construction method it has limited applicability, for it demonstrates structurally disadvantageous behaviors due to stress concentration and large displacement in the joint of assembled segments. This paper proposes a precast segment joint with improved structural performance, and experimentally assesses the structural performance of the proposed joint in terms of crack and failure modes, deformation, maximum load and displacement ductility. In consideration of constructability and structural performance, this paper suggests different types of joint with shear key, post tension and steel rods as variables, and performs a static loading test on them. The test results show that the performance of SGSP specimens is around 84% that of a monolithic specimen in terms of the maximum load, while their ductility behaviors are better than the monolithic specimen. This result confirms the improved structural performance and applicability of the proposed joint.

Structural Performance of an Advanced Compsites Bridge Superstructure for Rapid Installation (급속시공용 복합신소재 교량상부구조의 구조 성능)

  • Ji, Hyo-Seon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.34-45
    • /
    • 2010
  • This paper describes the design, manufacturing process, testing, application, and assessment of capacity-ratings of the first all advanced composites bridge on a public highway system. In order to verify the bridge design prior to the field application, a sub-scale bridge superstructure was built and tested in the laboratory. The field load test results were compared with those of the finite element analysis for the verification of validity. To investigate its in-service performance, field load testing and visual inspections were conducted under an actual service environment. The paper includes the presentation and discussion for advanced composites bridge capacity rating based on the stress modification coefficients obtained from the test results. The test result indicates that the advanced composites bridge has no structural problems and is structurally performing well in-service as expected. Since these composite materials are new to bridge applications, reliable data is not available for their in-service performance. The results may provide a baseline data for future field advanced composites bridge capacity rating assessments and also serve as part of a long-term performance of advanced composites bridge.

  • PDF

In-Situ Behaviors of Steel Frame-type Retaining Walls (조립식 강재틀 옹벽의 현장적응성 분석)

  • 박종배;임해식;박용부;나승민;정형식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.93-101
    • /
    • 2003
  • Steel frame-type retaining walls(SFRW) are constructed by on site bolting of prefabricated steel frames and internal filling of materials such as rocks with the size of 150-300mm. Easy & fast construction, superior drainage performance and structural performance to rigorous site conditions are some of the merits of applying the SFRW to various construction sites. After the development of the structural details, a test construction of SFRW, with the height of 6m and 30m in length, was carried out at an apartment site. After completion, several months of monitoring was carried out on the structure to check displacement, tilting, settlement, soil pressures and drainage characteristics. The results of the structural behavior of SFRW along with its construction methods are presented in the paper.

  • PDF

High-Temperature Structural Analysis of a Medium-Scale Process Heat Exchanger Prototype (중형 공정열교환기 시제품 고온구조해석)

  • Song, Kee-Nam;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1283-1288
    • /
    • 2012
  • A process heat exchanger (PHE) in a nuclear hydrogen system is a key component for transferring the considerable heat generated in a very high temperature reactor (VHTR) to a chemical reaction that yields a large quantity of hydrogen. A performance test on a medium-scale PHE prototype made of $Hastelloy^{(R)}$-X is scheduled in a small-scale gas loop at the Korea Atomic Energy Research Institute. In this study, as a preliminary study before carrying out the performance test in the gas loop, high-temperature structural analysis modeling and macroscopic thermal and structural analysis of the medium-scale PHE prototype by imposing the established displacement boundary constraints were carried out under the gas loop test condition. The results obtained in this study will be compared with the performance test results of the medium-scale PHE prototype in the gas loop.

The Role of Islamic Business Ethics and Market Condition on Organizational Performance

  • BULDAN, Hamdi;HAMID, Edy Suandi;SRIYANA, Jaka;TOHIRIN, Achmad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.781-790
    • /
    • 2021
  • The purpose of this study is to test empirically the effect of Islamic business ethics and market conditions on organizational performance in state-owned construction companies in Indonesia. Data collection in this study was conducted online and the total number of data used was 81 respondents, both directors, heads of departments, and managers (general and project). This study uses a partial least squares structural equation model (PLS-SEM) with a quantitative approach that aims to test hypotheses and relationships between variables, such as Islamic business ethics, market conditions, project management, organizational culture, competitive strategy, and organizational performance. This study shows Islamic business ethics has a significant direct effect on organizational performance. Market conditions do not have a direct significant effect on organizational performance. Meanwhile, the mediating variables of project management and competitive strategy have a significant direct effect on organizational performance. Organizational culture does not have a significant influence on organizational performance. Conversely, market conditions have a significant influence through the mediating variables of project management and competitive strategy on organizational performance. Besides, this study is an attempt to determine the impact of the criteria factors affecting the measurement of the performance of construction organizations in Indonesia in terms of the external environment and organizational structure.

Improvement of Structural Performance of RC Beams retrofitted Hybrid Fiber using Recycled Coarse Aggregate and Ground Granulated Blast Furnace Slag (순환굵은골재 및 고로슬래그 미분말을 사용한 하이브리드섬유보강 철근콘크리트 보의 구조성능 개선)

  • Yi, Dong-Ryul;Ha, Gee-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.1-10
    • /
    • 2014
  • In this study, thirteen reinforced concrete beams, ground granulated blast furnace slag, replacing recycled coarse aggregate with PVA fiber (BSPG series) and recycled coarse aggregate with hybrid fiber ($BSPGR_1$, $BSPGR_2$ series), and standard specimen (BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the Structural performance of such test specimens, such as the load-displacement, the failure mode, and the maximum load carrying capacity. All the specimens were modeled in 1/2 scale-down size. Test results showed that test specimens ($BSPGR_1$, $BSPGR_2$ series) was increased the compressive strength by 13%, the maximum load carrying capacity by 4~21% and the ductility capacity by 4~28% in comparison with the standard specimen (BSS). And the specimens ($BSPGR_1$, $BSPGR_2$ series) showed enough ductile behavior and stable flexural failure.

Experimental Study on Structural Performance of Steel Slit Damper According to Restrained Out-of-plane Deformation (면외변형 구속에 따른 강재슬릿댐퍼의 구조성능에 관한 실험적 연구)

  • Jin-Woo Kim;U-Jin Kwon;Kwang-Yong Choi;Young-Ju Kim;Hae-Yong Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.86-94
    • /
    • 2023
  • In this study, a supplementary detail capable of restraining out-of-plane deformation was proposed for steel slit dampers, and a constant amplitude cyclic loading test was performed with the application of the proposed detail and the shape ratio of the damper as variables. Repeated hysteresis and cumulative plastic deformation according to the test results were analyzed. Repeated hysteresis of the slit damper with the proposed detail showed a stable spindle-shaped hysteresis within the set variable range, and no out-of-plane deformation of the damper was observed until ultimate state. It was confirmed that the restraining panel effect through the application of the proposed details is effective in terms of both the strength and deformation capacity of the damper. In addition, experimental parameters for the fatigue curve evaluation of slit dampers were derived in this study. Based on the results, it is judged that quantitative comparison of structural performance with various types of seismic devices will be possible in the future.

Structural evaluation of Aspendos (Belkis) Masonry Bridge

  • Turker, Temel
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.419-439
    • /
    • 2014
  • In this study, the structural performance of a seven span masonry arch bridge was evaluated. Investigations were performed on Aspendos (Belkis) Masonry Arch Bridge which was located on road of Aspendos Acropolis City in Antalya, Turkey. The old bridge was constructed in the early of fourth century AD, but it was exposed to the earthquakes in this region and the overloading by the river water. The old bridge was severely damaged and collapsed by probably an earthquake many years ago and a new bridge was then reconstructed on the remains of this old bridge by Seljuk in the 13th century. The bridge has also been affected from overflowing especially in the spring of each year, so some protective measures should be taken for this monumental bridge. Therefore, the structural performance under these loading has to be known. For this purpose, an initial finite element model was developed for the bridge and it was calibrated according to ambient vibration test results. After that, it was analyzed for different load cases such as dead, live, earthquake and overflow. Three load combinations were taken into account by deriving from these load cases. The displacements and the stresses for these combination cases were attained and compared with each other. The structural performance of Aspendos Masonry Arch Bridge was determined by considering the demand-capacity ratio for the tensile stress of the mortar used in Aspendos Masonry Arch Bridge. After these investigations, some concluding remarks and offers were presented at the end of this study.