• 제목/요약/키워드: structural performance

검색결과 8,491건 처리시간 0.044초

의료기관 TQM 활동, 보상 공정성과 성과간의 구조적 관계 (Structural Relationships among TQM Activities, Compensation Equity, and Performance in Hospitals)

  • 박현숙;박상연
    • 간호행정학회지
    • /
    • 제15권3호
    • /
    • pp.325-335
    • /
    • 2009
  • Purpose: The purpose of this study was to examine the relationships among TQM activities, compensation equity, and performance in hospitals. This study was designed to construct a structural equation model of TQM activities, compensation equity, and performance. Method: The subjects were 239 personnels working in four hospitals in Daegu and Gyeongpook. Data were collected using structured questionnaire from October 4, 2007 to February 4, 2008. The collected data were analyzed using the SPSS 12.0 and AMOS 5.0 program. Result: The overall fitness of the structural equation model was evaluated. These results showed that the model was adequate. TQM activities directly influenced organizational performance and indirectly influenced organizational performance through compensation equity. Conclusion: In testing the structural equation model, the findings showed that TQM activities and compensation equity were important factors for improving organizational performance. Therefore, to improve performance, the hospital leaders must establish the strategies to facilitate TQM activities. It is also necessary to establish effective reward and performance appraisal systems to induce positive participation of personnels in hospitals.

  • PDF

UNIFICATION OF THERMO-PHYSICS OF MATERIALS AND MECHANICS OF STRUCTURES - TOWARD A LIFE SPAN SIMULATOR OF STRUCTURAL CONCRETE -

  • Maekawa, K.;Ishida, T.
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.29-46
    • /
    • 1999
  • The performance based design obligates quantitative assessment of required performances by means of transparent and objective science. In this design scheme, simulation of both macro and micro-scale structural behaviors is thought to be a powerful tool. This paper proposes a way how to unify the structural safety and serviceability check method and durability assessment of RC structures. Though component chemical-physical processes are crudely assumed, system dynamics of micro-scale pore structure formation and macro-scale defects and deformation of structures was shown as possible and promising approach in future. The authors understand that the unification of structural and durability design has just started. For further progress and development, predictive tool of structural behaviors from birth to death of concrete under any specified environment and load serves as an essential technicality.

  • PDF

구조용 폼과 플라스틱 보강재를 적용한 모자 단면 부재의 좌굴 특성 분석 (Analysis of Buckling Characteristics for Hat Section Member Using Structural Foam and Plastic Reinforcement)

  • 이태현;신성기
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.114-119
    • /
    • 2008
  • The modern automotive industry develops innovative vehicle designs to meet increasing stability of car and performance demands of their customers. The improvement of frame rigidity by the structural foam is thought to be an effective means to improve the performance because of high applicability and minimum weight. The object of this paper is to examine the use of structural foam in a hat section as an optimum reinforcing means, to compare the reinforcing performance of structural foam versus a plastic reinforcement. The result of this paper indicated that reinforcing efficiencies are achieved by structural foam and plastic reinforcement shape.

Evaluating high performance steel tube-framed diagrid for high-rise buildings

  • Lee, Dongkyu;Ha, Taehyu;Jung, Miyoung;Kim, Jinho
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.289-303
    • /
    • 2014
  • In recent, development of construction and design technology gives taller, larger and heavier steel framed structures. With the tendency of increasing high-rise building, this study is strongly related to structural system, one of significant components in structural design. This study presents an innovative structural system, with high performance steel material, diagrid. Its detail, structural analysis, and structural experiments are all included for the development of new structures.

PC level 병렬 구조해석법 개발을 위한 PCG 알고리즘 (PCG Algorithms for Development of PC level Parallel Structural Analysis Method)

  • 박효선;박성무;권윤한
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.362-369
    • /
    • 1998
  • The computational environment in which engineers perform their designs has been rapidly evolved from coarse serial machines to massively parallel machines. Although the recent development of high-performance computers are available for a number of years, only limited successful applications of the new computational environments in computational structural engineering field has been reported due to its limited availability and large cost associated with high-performance computing. As a new computational model for high-performance engineering computing without cost and availability problems, parallel structural analysis models for large scale structures on a network of personal computers (PCs) are presented in this paper. In structural analysis solving routine for the linear system of equations is the most time consuming part. Thus, the focus is on the development of efficient preconditioned conjugate gradient (PCG) solvers on the proposed computational model. Two parallel PCG solvers, PPCG-I and PPCG-II, are developed and applied to analysis of large scale space truss structures.

  • PDF

Seismic Performance of High-rise Concrete Buildings in Chile

  • Lagos, Rene;Kupfer, Marianne;Lindenberg, Jorge;Bonelli, Patricio;Saragoni, Rodolfo;Guendelman, Tomas;Massone, Leonardo;Boroschek, Ruben;Yanez, Fernando
    • 국제초고층학회논문집
    • /
    • 제1권3호
    • /
    • pp.181-194
    • /
    • 2012
  • Chile is characterized by the largest seismicity in the world which produces strong earthquakes every $83{\pm}9years$ in the Central part of Chile, where it is located Santiago, the capital of Chile. The short interval between large earthquakes magnitude 8.5 has conditioned the Chilean seismic design practice to achieve almost operational performance level, despite the fact that the Chilean Code declares a scope of life safe performance level. Several Indexes have been widely used throughout the years in Chile to evaluate the structural characteristics of concrete buildings, with the intent to find a correlation between general structural conception and successful seismic performance. The Indexes presented are related only to global response of buildings under earthquake loads and not to the behavior or design of individual elements. A correlation between displacement demand and seismic structural damage is presented, using the index $H_o/T$ and the concrete compressive strain ${\varepsilon}_c$. Also the Chilean seismic design codes pre and post 2010 Maule earthquake are reviewed and the practice in seismic design vs Performance Based Design is presented. Performance Based Design procedures are not included in the Chilean seismic design code for buildings, nevertheless the earthquake experience has shown that the response of the Chilean buildings has been close to operational. This can be attributed to the fact that the drift of most engineered buildings designed in accordance with the Chilean practice falls below 0.5%. It is also known by experience that for frequent and even occasional earthquakes, buildings responded elastically and thus with "fully operational" performance. Taking the above into account, it can be said that, although the "basic objective" of the Chilean code is similar to the SEAOC VISION2000 criteria, the actual performance for normal buildings is closer to the "Essential/Hazardous objective".

Do resilience and work engagement enhance distribution manager performance? A study of the automotive sector

  • LHALLOUBI, Jaouad;IBNCHAHID, Fatima
    • 유통과학연구
    • /
    • 제18권7호
    • /
    • pp.5-17
    • /
    • 2020
  • Purpose: The purpose of this study is to examine the influence of resilience and work engagement on performance of managers in the automotive sector in Morocco. It analyses the mediating effect of work engagement between resilience and manager performance. Though earlier studies have focused on the effect of resilience on employee performance and work engagement. none has looked at the mediating role of work engagement in this context. Thus, the present paper attempts to fill this literature gap. Research design, data and methodology: A confirmatory survey was conducted among a sample of 196 employees of automobile companies in Tangier-Morocco. A structural equation analysis using SmartPLS was performed while Preacher and Hayes (2008) method was used to analyze the mediation effect. Results: a) Manager resilience has a positive influence on work engagement, which further influences their performance; b) there is a statistically insignificant relationship between resilience and manager performance; c) Structural equation modelling analysis shows that work engagement partially mediates the relationship between resilience and manager performance. Conclusion: Theoretical contributions, practical implications, and future research directions are discussed.

항공기 진동에 대한 광학 탑재 장비 구조 안정성 및 광학 성능 분석 (Analysis of Structural Stability and Optical Performance for Optical Equipment During In-flight Vibration)

  • 조문신;김상원
    • 대한기계학회논문집A
    • /
    • 제41권9호
    • /
    • pp.897-904
    • /
    • 2017
  • 광학 탑재 장비는 다수의 광학 부품 및 검출기로 구성되며 목표물 탐지와 분류를 목적으로 항공기, 전차 및 군함에 탑재되어 운용된다. 수 km 고도에서 운용되는 항공용 광학 탑재 장비는 항공기에서 발생하는 진동 때문에 구조 안정성과 광학 성능 저하가 발생한다. 설계 단계에서 진동 환경조건에 대한 탑재 장비의 구조 안정성 및 광학 성능 검증이 요구된다. 본 연구에서는 진동 환경조건을 시험 표준 규격서와 항공기에서 발생하는 진동을 측정하여 분석하였다. 진동 환경조건은 구조 안정성 검증을 위한 내구도 진동조건과 광학 성능 검증을 위한 운용 진동조건으로 구분하였다. 구조 안정성을 고유진동수 해석, 내구도 진동 응답해석 및 정해석을 통해 검증하였다. 광학 성능을 운용 진동 응답해석 결과를 광학 설계/분석 프로그램에 적용하여 검증하였다.

Post-fire Repair of Concrete Structural Members: A Review on Fire Conditions and Recovered Performance

  • Qiu, Jin;Jiang, Liming;Usmani, Asif
    • 국제초고층학회논문집
    • /
    • 제10권4호
    • /
    • pp.323-334
    • /
    • 2021
  • Concrete structures may rarely collapse in fire incidents but fire induced damage to structural members is inevitable as a result of material degradation and thermal expansion. This requires certain repairing measures to be applied to restore the performance of post-fire members. A brief review on investigation of post-fire damage of concrete material and concrete structural members is presented in this paper, followed by a review of post-fire repair research regarding various types of repairing techniques (FRP, steel plate, and concrete section enlargement) and different type of structural members including columns, beams, and slabs. Particularly, the fire scenarios adopted in these studies leading to damage are categorized as three levels according to the duration of gas-phase temperature above 600℃ (t600). The repair effectiveness in terms of recovered performance of concrete structural members compared to the initial undamaged performance has been summarized and compared regarding the repairing techniques and fire intensity levels. The complied results have shown that recovering the ultimate strength is achievable but the stiffness recovery is difficult. Moreover, the current fire loading scenarios adopted in the post-fire repair research are mostly idealized as constant heating rates or standard fire curves, which may have produced unrealistic fire damage patterns and the associated repairing techniques may be not practical. For future studies, the realistic fire impact and the system-level structural damage investigation are necessary.

Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue

  • Liu, Yang;Li, Hong-Nan;Li, Chao;Dong, Tian-Ze
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.197-215
    • /
    • 2021
  • Under a severe environment of multiple hazards such as earthquakes and winds, the life-cycle performance of engineering structures may inevitably be deteriorated due to the fatigue effect caused by long-term exposure to wind loads, which would further increase the structural vulnerability to earthquakes. This paper presents a framework for evaluating the lifetime structural seismic performance under the effect of wind-induced fatigue considering different sources of uncertainties. The seismic behavior of a high-rise steel-concrete composite frame with buckling-restrained braces (FBRB) during its service life is systematically investigated using the proposed approach. Recorded field data for the wind hazard of Fuzhou, Fujian Province of China from Jan. 1, 1980 to Mar. 31, 2019 is collected, based on which the distribution of wind velocity is constructed by the Gumbel model after comparisons. The OpenSees platform is employed to establish the numerical model of the FBRB and conduct subsequent numerical computations. Allowed for the uncertainties caused by the wind generation and structural modeling, the final annual fatigue damage takes the average of 50 groups of simulations. The lifetime structural performance assessments, including static pushover analyses, nonlinear dynamic time history analyses and fragility analyses, are conducted on the time-dependent finite element (FE) models which are modified in lines with the material deterioration models. The results indicate that the structural performance tends to degrade over time under the effect of fatigue, while the influencing degree of fatigue varies with the duration time of fatigue process and seismic intensity. The impact of wind-induced fatigue on structural responses and fragilities are explicitly quantified and discussed in details.