• Title/Summary/Keyword: structural monitoring

Search Result 1,894, Processing Time 0.024 seconds

Safety Assessment and Behavior Control System using Monitoring of Segmental PSC Box Girder Bridges during Construction (세그멘탈 PSC박스거더교량의 시공간 계측모니터링을 통한 확률적 구조안정성 평가 및 제어 시스템)

  • Shin, Jae-Chul;Cho, Hyo-Nam;Park, Kyung-Hoon;Bae, Yong-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 2001
  • In spite of the increasing construction of segmental PSC box girder bridges, the techniques associated with real-time monitoring, construction control and safety assessment during construction have been less developed compared with the construction techniques. Thus, the development of an integrated system including real-time measurement and monitoring, control and safety assessment system during construction is necessary fur more safe and precise construction of the bridges. This study presents a prototype integrated monitoring system for preventing abnormal behavior and accidents under construction stages, that consist of behavior control system for precise construction, reliability-based safety assessment system, and structural analysis. Also, a prototype software system is developed on the basis of the proposed model. It is successfully applied to the Sea-Hae Grand Bridge built by FCM. The integrated system model and software system can be utilized for the safe and precise construction of segmental PSC bridges during construction.

  • PDF

Condition monitoring and rating of bridge components in a rail or road network by using SHM systems within SRP

  • Aflatooni, Mehran;Chan, Tommy H.T;Thambiratnam, David P.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.199-211
    • /
    • 2015
  • The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.

Big data platform for health monitoring systems of multiple bridges

  • Wang, Manya;Ding, Youliang;Wan, Chunfeng;Zhao, Hanwei
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.345-365
    • /
    • 2020
  • At present, many machine leaning and data mining methods are used for analyzing and predicting structural response characteristics. However, the platform that combines big data analysis methods with online and offline analysis modules has not been used in actual projects. This work is dedicated to developing a multifunctional Hadoop-Spark big data platform for bridges to monitor and evaluate the serviceability based on structural health monitoring system. It realizes rapid processing, analysis and storage of collected health monitoring data. The platform contains offline computing and online analysis modules, using Hadoop-Spark environment. Hadoop provides the overall framework and storage subsystem for big data platform, while Spark is used for online computing. Finally, the big data Hadoop-Spark platform computational performance is verified through several actual analysis tasks. Experiments show the Hadoop-Spark big data platform has good fault tolerance, scalability and online analysis performance. It can meet the daily analysis requirements of 5s/time for one bridge and 40s/time for 100 bridges.

Cointegration based modeling and anomaly detection approaches using monitoring data of a suspension bridge

  • Ziyuan Fan;Qiao Huang;Yuan Ren;Qiaowei Ye;Weijie Chang;Yichao Wang
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.183-197
    • /
    • 2023
  • For long-span bridges with a structural health monitoring (SHM) system, environmental temperature-driven responses are proved to be a main component in measurements. However, anomalous structural behavior may be hidden incomplicated recorded data. In order to receive reliable assessment of structural performance, it is important to study therelationship between temperature and monitoring data. This paper presents an application of the cointegration based methodology to detect anomalies that may be masked by temperature effects and then forecast the temperature-induced deflection (TID) of long-span suspension bridges. Firstly, temperature effects on girder deflection are analyzed with fieldmeasured data of a suspension bridge. Subsequently, the cointegration testing procedure is conducted. A threshold-based anomaly detection framework that eliminates the influence of environmental temperature is also proposed. The cointegrated residual series is extracted as the index to monitor anomaly events in bridges. Then, wavelet separation method is used to obtain TIDs from recorded data. Combining cointegration theory with autoregressive moving average (ARMA) model, TIDs for longspan bridges are modeled and forecasted. Finally, in-situ measurements of Xihoumen Bridge are adopted as an example to demonstrate the effectiveness of the cointegration based approach. In conclusion, the proposed method is practical for actual structures which ensures the efficient management and maintenance based on monitoring data.

Identification of bridge bending frequencies through drive-by monitoring compensating vehicle pitch detrimental effect

  • Lorenzo Benedetti;Lorenzo Bernardini;Antonio Argentino;Gabriele Cazzulani;Claudio Somaschini ;Marco Belloli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.305-321
    • /
    • 2022
  • Bridge structural health monitoring with the aim of continuously assessing structural safety and reliability represents a topic of major importance for worldwide infrastructure managers. In the last two decades, due to their potential economic and operational advantages, drive-by approaches experienced growing consideration from researcher and engineers. This work addresses two technical topics regarding indirect frequency estimation methods: bridge and vehicle dynamics overlapping, and bridge expansion joints impact. The experimental campaign was conducted on a mixed multi-span bridge located in Lombardy using a Ford Galaxy instrumented with a mesh of wireless accelerometers. The onboard time series were acquired for a number of 10 passages over the bridge,performed at a travelling speed of 30 km/h, with no limitations imposed to traffic. Exploiting an ad-hoc sensors positioning, pitch vehicle motion was compensated, allowing to estimate the first two bridge bending frequencies from PSD functions; moreover, the herein adopted approach proved to be insensitive to joints disturbance. Conclusively, a sensitivity study has been conducted to trace the relationship between estimation accuracy and number of trips considered in the analysis. Promising results were found, pointing out a clear positive correlation especially for the first bending frequency.

Internal force monitoring design of long span bridges based on ultimate bearing capacity ratios of structural components

  • Hu, Ke;Xie, Zheng;Wang, Zuo-Cai;Ren, Wei-Xin;Chen, Lei-Ke
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.93-110
    • /
    • 2018
  • In order to provide a novel strategy for long-span bridge health monitoring system design, this paper proposes a novel ultimate bearing capacity ratios based bridge internal force monitoring design method. The bridge ultimate bearing capacity analysis theories are briefly described. Then, based on the ultimate bearing capacity of the structural component, the component ultimate bearing capacity ratio, the uniformity of ultimate bearing capacity ratio, and the reference of component ultimate bearing capacity ratio are defined. Based on the defined indices, the high bearing components can then be found, and the internal force monitoring system can be designed. Finally, the proposed method is applied to the bridge health monitoring system design of the second highway bridge of Wuhu Yangtze river. Through the ultimate bearing capacity analysis of the bridge in eight load conditions, the high bearing components are found based on the proposed method. The bridge internal force monitoring system is then preliminary designed. The results show that the proposed method can provide quantitative criteria for sensors layout. The monitoring components based on the proposed method are consistent with the actual failure process of the bridge, and can reduce the monitoring of low bearing components. For the second highway bridge of Wuhu Yangtze river, only 59 components are designed to be monitored their internal forces. Therefore, the bridge internal force monitoring system based on the ultimate bearing capacity ratio can decrease the number of monitored components and the cost of the whole monitoring system.

Three-dimensional structural health monitoring based on multiscale cross-sample entropy

  • Lin, Tzu Kang;Tseng, Tzu Chi;Lainez, Ana G.
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.673-687
    • /
    • 2017
  • A three-dimensional; structural health monitoring; vertical; planar; cross-sample entropy; multiscaleA three-dimensional structural health monitoring (SHM) system based on multiscale entropy (MSE) and multiscale cross-sample entropy (MSCE) is proposed in this paper. The damage condition of a structure is rapidly screened through MSE analysis by measuring the ambient vibration signal on the roof of the structure. Subsequently, the vertical damage location is evaluated by analyzing individual signals on different floors through vertical MSCE analysis. The results are quantified using the vertical damage index (DI). Planar MSCE analysis is applied to detect the damage orientation of damaged floors by analyzing the biaxial signals in four directions on each damaged floor. The results are physically quantified using the planar DI. With progressive vertical and planar analysis methods, the damaged floors and damage locations can be accurately and efficiently diagnosed. To demonstrate the performance of the proposed system, performance evaluation was conducted on a three-dimensional seven-story steel structure. According to the results, the damage condition and elevation were reliably detected. Moreover, the damage location was efficiently quantified by the DI. Average accuracy rates of 93% (vertical) and 91% (planar) were achieved through the proposed DI method. A reference measurement of the current stage can initially launch the SHM system; therefore, structural damage can be reliably detected after major earthquakes.

Usability of inclinometers as a complementary measurement tool in structural monitoring

  • Pehlivan, Huseyin;Bayata, Halim Ferit
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1077-1085
    • /
    • 2016
  • In the last few years, many structural monitoring studies have been performed using different techniques to measure structures of different scales such as buildings, dams or bridges. One of the mostly used tools are GPS instruments, which have been utilized in various combinations with accelerometers and some other conventional sensors. In the current study, observation series were recorded for 8 hours with GPS receivers (NovAtel) and Inclination Measurement Sensors mounted on a television tower in Istanbul, Turkey. Each series of observations collected from two different sensors were transformed into a single coordinate system (Local Topocentric Coordinates System). The positional changes of the tower were calculated from the GPS and the inclination data. These changes were plotted in two dimensions (2D) on the same graphic. Thus, the possibility of comparison and analysis were found using the data from both the GPS and the Inclinometer complement each other, in the real test area. The positional changes of the tower were modeled for further examination. As a result, the movement of the tower within an area of $1{\times}1cm^2$ was observed. Based on the results, it can be concluded that inclinometers can be used for monitoring the structural behavior of the tower.

Structural health monitoring of the Jiangyin Bridge: system upgrade and data analysis

  • Zhou, H.F.;Ni, Y.Q.;Ko, J.M.
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.637-662
    • /
    • 2013
  • The Jiangyin Bridge is a suspension bridge with a main span of 1385 m over the Yangtze River in Jiangsu Province, China. Being the first bridge with a main span exceeding 1 km in Chinese mainland, it had been instrumented with a structural health monitoring (SHM) system when completed in 1999. After operation for several years, it was found with malfunction in sensors and data acquisition units, and insufficient sensors to provide necessary information for structural health evaluation. This study reports the SHM system upgrade project on the Jiangyin Bridge. Although implementations of SHM system have been reported worldwide, few studies are available on the upgrade of SHM system so far. Recognizing this, the upgrade of original SHM system for the bridge is first discussed in detail. Especially, lessons learned from the original SHM system are applied to the design of upgraded SHM system right away. Then, performance assessment of the bridge, including: (i) characterization of temperature profiles and effects; (ii) recognition of wind characteristics and effects; and (iii) identification of modal properties, is carried out by making use of the long-term monitoring data obtained from the upgraded SHM system. Emphasis is placed on the verification of design assumptions and prediction of bridge behavior or extreme responses. The results may provide the baseline for structural health evaluation.

Structural Integrity Monitoring of the Marine Riser with Composite Structure (복합구조 해양라이저의 구조건전성 모니터링)

  • Yoo, Yong;Jae, Hyunmin;Park, Sooyong;Choi, Sanghyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.44-51
    • /
    • 2014
  • As the world energy consumption grows, the interest in marin energy resources is increasing. In excavating such resources, the marine riser which connects the floating structure and sea bed is an essential device. The riser system is often exposed to harsh ocean environment and thus vulnerable to damage. Since the failure of the riser system may cause serious economical loss as well as environmental problem, the structural integrity of the riser is very important. Generally, the riser is an extremely slender structure with a much smaller diameter than a length. Therefore, a structural integrity monitoring methodology for typical buildings and bridges may not be applicable. In this paper, the applicability of a damage identification method for a structure to a marine riser is examined via a numerical example. Also, recent research practices and findings for monitoring the behavior and the structural integrity of the marine riser are examined and summarized.