• 제목/요약/키워드: structural materials

검색결과 5,951건 처리시간 0.034초

저방사화 철강재 (JLF-1)의 파괴인성에 미치는 시험편 크기의 영향 (Effect of specimen size on fracture toughness of reduced activation ferritic steel (JLF-l))

  • 김동현;윤한기;박원조
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.300-305
    • /
    • 2003
  • Reduced activation ferritic (JLF-1) steel is leading candidates for blanket/first-wall structures of the D-T fusion reactor. In fusion application, structural materials will suffer effects of repeated changes of temperature. Therefore, the data base of tensile strength and fracture toughness at operated temperature $400^{\circ}C$ are very important. Fracture toughness ($J_{IC}$) and tensile tests were carried out at room temperature and elevated temperature ($400^{\circ}C$). Fracture toughness tests were performed with two type size to investigate the relationship between the constraint effect of a size and the fracture toughness resistance curve. As the results, the tensile strength and the fracture toughness values of the JLF-1 steel are slightly decreased with increasing temperature. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. The fracture toughness values of JLF-1 steel at room temperature and at $400^{\circ}C$ shows an excellent fracture toughness ($J_{IC}$) of about $530kJ/m^2\;and\;340kJ/m^2$, respectively.

  • PDF

API 2W Gr. 50 강재 용접부의 피로균열전파거동의 거시적 및 미시적 관찰 (Marco and Microscopic Observations of Fatigue Crack Growth Behavior in API 2W Gr. 50 Steel Joints)

  • 손혜정;김선진
    • 한국해양공학회지
    • /
    • 제26권5호
    • /
    • pp.73-80
    • /
    • 2012
  • It is well known that a considerable amount of scatter is shown in experimental results relating to fatigue crack growth even under identical and constant amplitude cyclic loading conditions. Moreover, flux cored arc welding (FCAW) is a common method used to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the macro- and microscopic observations of the fatigue crack growth (FCG) behavior of the FCAWed API 2W Gr. 50 steel joints typically applied for offshore structures. In order to clearly understand the randomness of the fatigue crack growth behavior in the materials of three different zones, the weld metal (WM), heat affected zone (HAZ), and base metal (BM), experimental fatigue crack growth tests for each of five specimens were performed on ASTM standard compact tension (CT) specimens under constant amplitude cyclic loading. Special focus was placed on the fatigued fracture surfaces. As a result, a different behavior was observed at the macro-level, depending on the type of material property: BM, HAZ, or WM. The variability in the fatigue crack growth rate for WM was higher than that of BM and HAZ.

선형 및 비선형 손상 발전 모델을 이용한 고장력강(EH36)의 연성 파단 예측 (Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models)

  • 박성주;박병재;정준모
    • 한국해양공학회지
    • /
    • 제31권4호
    • /
    • pp.288-298
    • /
    • 2017
  • A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.

Mechanical performances of concrete beams with hybrid usage of steel and FRP tension reinforcement

  • Bui, Linh V.H.;Stitmannaithum, Boonchai;Ueda, Tamon
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.391-407
    • /
    • 2017
  • Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and especially in corrosive environments to improve the durability of concrete structures. However, FRPs have a low modulus of elasticity and a linear elastic behavior up to rupture, thus reinforced concrete (RC) components with such materials would exhibit a less ductility in comparison with steel reinforcement at the similar members. There were several studies showed the behavior of concrete beams with the hybrid combination of steel and FRP longitudinal reinforcement by adopting the experimental and numerical programs. The current study presents a numerical and analytical investigation based on the data of previous researches. Three-dimensional (3D) finite element (FE) models of beams by using ANSYS are built and investigated. In addition, this study also discusses on the design methods for hybrid FRP-steel beams in terms of ultimate moment capacity, load-deflection response, crack width, and ductility. The effects of the reinforcement ratio, concrete compressive strength, arrangement of reinforcement, and the length of FRP bars on the mechanical performance of hybrid beams are considered as a parametric study by means of FE method. The results obtained from this study are compared and verified with the experimental and numerical data of the literature. This study provides insight into the mechanical performances of hybrid FRP-steel RC beams, builds the reliable FE models which can be used to predict the structural behavior of hybrid RC beams, offers a rational design method together with an useful database to evaluate the ductility for concrete beams with the combination of FRP and steel reinforcement, and motivates the further development in the future research by applying parametric study.

천연가스 생산기지 시설물의 내진성능평가 절차 (Procedure of Seismic Performance Evaluation of LNG Receiving Terminal Facilities)

  • 이태형;이은숙;박태규;홍성경;김준호
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.110-115
    • /
    • 2014
  • It is crucial for important facilities to withstand strong earthquakes because their damage may cause undesirable socio-economic effect. A liquefied natural gas (LNG) receiving terminal is one of the lifeline facilities whose seismic safety needs to be guaranteed. Even though all operating LNG receiving terminals in Korea were seismically designed, old design codes do not guarantee to comply with the current seismic design codes. In addition, if the constructional materials have been deteriorated, the seismic capacity of facilities may be also deteriorated. Therefore, it is necessary that the seismic performance of LNG receiving terminals is evaluated and the facilities that lack of seismic capacity have to be rehabilitated. In this paper, a procedure of seismic performance evaluation of such facilities is developed such that the procedure consists of three phases, namely pre-analysis, analysis, and evaluation phases. In the pre-analysis phase, design documents are reviewed and walk-on inspection is performed to determine the current state of the material properties. In the analysis phase, a structural analysis under a given earthquake or a seismic effect is performed to determine the seismic response of the structure. In the evaluation phase, seismic performance of the structure is evaluated based on limit states. Two of the important facilities, i.e. the submerged combustion vaporizer (SMV) and pipe racks of one of the Korean LNG receiving terminals are selected and evaluated according to the developed procedure. Both of the facilities are safe under the design level earthquake.

양극산화 시간 및 전류밀도 변화에 따른 다공질 실리콘의 특성 변화 (Effects of Current Density and Anodization Time on the Properties of Porous Si)

  • 최현영;김민수;김군식;조민영;전수민;임광국;이동율;김진수;김종수;임재영
    • 한국표면공학회지
    • /
    • 제43권3호
    • /
    • pp.121-126
    • /
    • 2010
  • The PS(porous Si) were fabricated with different anodization time and current density. The structural and optical properties of PS were investigated by SEM(scanning electron microscopy), AFM(atomic force microscopy), and PL(photoluminescence). It is found that the pore size and surface roughness of PS are proportional to the current density. The PL spectra show that the PL peak position is red-shifted with increasing anodization time. This behavior corresponds to the change of pore size which is consistent with the quantum confinement model. The FWHM(full width at half maximum) of PL peak is decreased from 97 to 51 nm and the PL peak position is blue-shifted with increasing current density up to 10 mA/$cm^2$. The PL peak intensity of the PS fabricated under 1 mA/$cm^2$ is the highest among samples.

화학 용액 증착법으로 제조한 Bi0.9A0.1Fe0.975Zn0.025O3-δ (A=Eu, Dy) 박막의 구조와 전기적 특성 (Structural and Electrical Properties of Bi0.9A0.1Fe0.975Zn0.025O3-δ (A=Eu, Dy) BiFeO3 Thin Films by Chemical Solution Deposition)

  • 김윤장;김진원;장성근
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.226-230
    • /
    • 2018
  • Pure $BiFeO_3$ (BFO) and codoped $Bi_{0.9}A_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (A=Eu, Dy) thin films were prepared on Pt(111)/Ti/$SiO_2$/Si(100) substrates by chemical solution deposition. The remnant polarizations (2Pr) of the $Bi_{0.9}Eu_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (BEFZO) and $Bi_{0.9}Dy_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (BDFZO) thin films were about 36 and $26{\mu}C/cm^2$ at the maximum electric fields of 900 and 917 kV/cm, respectively, at 1 kHz. The codoped BEFZO and BDFZO thin films showed improved electrical properties, and leakage current densities of 3.68 and $1.21{\times}10^{-6}A/cm^2$, respectively, which were three orders of magnitude lower than that of the pure BFO film, at 100 kV/cm.

복합열화 환경하에서 표면피복종류 및 피복두께에 따른 철근콘크리트의 부식특성 (Corrosion Properties of Reinforced Concrete with Types of Surface Cover and Covering Depth under the Combined Deterioration Environments)

  • 김무한;권영진;김용로;김재환;장종호;조봉석
    • 한국건축시공학회지
    • /
    • 제4권1호
    • /
    • pp.119-126
    • /
    • 2004
  • Generally, reinforced concrete is one of the most commonly used structural materials and it prevents corrosion of steel bar by high pH of interior, But, as time elapsed, reinforced concrete structure become deteriorated by many of combined deterioration factors and environmental conditions. And, there are large number of deteriorate mechanism of the reinforced concrete structure and it acts complexly. It is recognized that steel bar corrosion is the main distress behind the present concern regarding concrete durability. In this study, to institute combined deterioration environments, established acceleration condition and cycle for combined deterioration environments has a resemblance to environments which are real structures placed. After that to confirm corrosion properties of reinforced concrete due to permeability with covering depth and types of surface cover under combined deterioration environments, measured carbonation velocity coefficients, chloride ion diffusion coefficients, water absorption coefficients, air permeability coefficients and electric potential, corrosion area ratio, weight reduction, corrosion velocity of steel bar. The results showed that an increase in age also decrease carbonation velocity coefficients, increase Chloride ion diffusion coefficients and increases water absorption coefficients. As well, an increase in age also increases corrosion of steel bar. Data on the development of corrosion velocity of steel bar with types of surface cover made with none, organic B, organic A, inorganic B, and inorganic A is shown. As well, permeability and corrosion velocity of steel bar with covering depth is superior to 10mm than 20mm. And it is confirmed permeability and corrosion properties of steel bar are closely related.

Ag 함량이 진공증발법으로 형성된 광금지대 (Ag,Cu)(In,Ga)Se2 태양전지에 미치는 영향 (Effects of Ag Content on Co-evaporated Wide Bandgap (Ag,Cu)(In,Ga)Se2 Solar Cells)

  • 박주완;윤재호;조준식;유진수;이희덕;김기환
    • Current Photovoltaic Research
    • /
    • 제3권1호
    • /
    • pp.16-20
    • /
    • 2015
  • Ag addition in chalcopyrite materials is known to lead beneficial changes in aspects of structural and electronic properties. In this work, the effects of Ag alloying of $Cu(In,Ga)Se_2$-based solar cells has been investigated. Wide bandgap $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x = 0.75~0.8) films have been deposited using a three-stage co-evaporation with various Ag/(Ag+Cu) ratios. With Ag alloying the $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x~0.8) films were found to have greater grainsize and film thickness. Device were also fabricated with the $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ (x~0.8) films and their J-V and quantum efficiency measurements were carried out. The highest-efficiency $(Ag,Cu)(In_{1-x},Ga_x)Se_2$ solar cell with Eg > 1.5 eV had an efficiency of 12.2% with device parameters $V_{OC}=0.810V$, $J_{SC}=21.7mA/cm^2$, and FF = 69.0%.

Antimicrobial Properties and Cytotoxicity of Sulfated (1,3)-β-D-Glucan from the Mycelium of the Mushroom Ganoderma lucidum

  • Wan-Mohtar, Wan Abd Al Qadr Imad;Young, Louise;Abbott, Grainne M.;Clements, Carol;Harvey, Linda M.;McNeil, Brian
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.999-1010
    • /
    • 2016
  • Ganoderma lucidum BCCM 31549 has a long established role for its therapeutic activities. In this context, much interest has focused on the possible functions of the (1,3)-β-D-glucan (G) produced by these cultures in a stirred-tank bioreactor and extracted from their underutilized mycelium. In the existing study, we report on the systematic production of G, and its sulfated derivative (GS). The aim of this study was to investigate G and its GS from G. lucidum in terms of their antibacterial properties and cytotoxicity spectrum against human prostate cells (PN2TA) and human caucasian histiocytic lymphoma cells (U937). 1H NMR for both G and GS compounds showed β-glycosidic linkages and structural similarities when compared with two standards (laminarin and fucoidan). The existence of characteristic absorptions at 1,170 and 867 cm-1 in the FTIR (Fourier Transform Infrared Spectroscopy) for GS demonstrated the successful sulfation of G. Only GS exhibited antimicrobial activity against a varied range of test bacteria of relevance to foodstuffs and human health. Moreover, both G and GS did not show any cytotoxic effects on PN2TA cells, thus helping demonstrate the safety of these polymers. Moreover, GS showed 40% antiproliferation against cancerous U937 cells at the low concentration (60 μg/ ml) applied in this study compared with G (10%). Together, this demonstrates that sulfation clearly improved the solubility and therapeutic activities of G. The water-soluble GS demonstrates the potential multifunctional effects of these materials in foodstuffs.