• 제목/요약/키워드: structural loads

검색결과 3,030건 처리시간 0.026초

등가하중법을 이용한 접합날개의 기하 비선형 응답 구조최적설계 (Nonlinear Response Structural Optimization of a Joined-Wing Using Equivalent Loads)

  • 김용일;박경진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.321-326
    • /
    • 2007
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing arc joined together in the joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performances and reduction of the structural weight. The structural behavior of the joined-wing has a high geometric nonlinearity according to the external loads. The gust loads are the most critical loading conditions in the structural design of the joined-wing. The nonlinear behavior should be considered in the optimization of the joined-wing. It is well known that conventional nonlinear response optimization is extremely expensive: therefore, the conventional method is almost impossible to use in large scale structures such as the joined-wing. In this research, geometric nonlinear response structural optimization is carried out using equivalent loads. Equivalent loads are the load sets which generate the same response field in linear analysis as that from nonlinear analysis. In the equivalent loads method, the external loads are transformed to the equivalent loads (EL) for linear static analysis, and linear response optimization is carried out based on the EL.

  • PDF

파랑하중과 지진하중하의 방파제 구조해석 (Structural Analysis of a Breakwater in Wave and Seismic Loads)

  • 조규남
    • 한국전산구조공학회논문집
    • /
    • 제22권1호
    • /
    • pp.45-52
    • /
    • 2009
  • 본 논문에서는 파랑하중과 지진하중 하에서의 방파제 설계와 관련한 해석에 대한 하나의 설계지침을 제시하였다. 이를 위해서 파랑하중 중 쇄파대내에서 일어날 수 있는 충격파랑하중을 정량적으로 하나의 모델에 대해 제안된 식에 의해 산출 해 보았다. 널리 사용되는 모리슨 방정식에 의한 파력과 쇄파력으로 야기되는 충격하중을 산술적으로 합하는 방식으로 계산해보았다. 결과적으로 충격하중이 크지 않아, 일반적으로 쇄파파력산정에 있어서 오차범위가 큰 불규칙파의 쇄파대내의 파력공식인 고다식을 사용하는 것은 큰 문제가 없다는 가정을 할 수 있었다. 이에 파랑하중의 경우 항만구조물에 사용되는 고다식을 이용하여 방파제 구조물의 거동을 해석해 보았다. 지진하중의 경우 단주기, 장주기, 인공지진파에 의한 수치해석을 수행하여 방파제의 거동을 해석하였다. 방파제의 설계에 있어서 중요한 것은 설치해역에 적합한 방파제를 선택하는 문제이며 다음으로는 파랑하중과 지진하중의 중요도를 판단하는 것이라 판단된다. 모델을 선정하여 계산해본 결과 파랑하중에 의한 구조물의 거동과 지진하중에 의한 거동이 같은 정도의 구조적인 변화를 나타내는 것으로 판단되어 방파제 설계 시 두 하중을 같은 비중으로 다루어야 할 것으로 판단되어 진다. 방파제 설계의 주요 항목으로 파랑하중과 지진하중이 동시에 중요하다는 점을 제시하였다.

냉동 창고 상시 적재하중에 관한 확률론적 연구 (Probabilistic Analysis of Design Live Loads on A Refrigeration Store)

  • 김대호;정재훈;원영술;주경재
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권4호
    • /
    • pp.109-120
    • /
    • 2001
  • Live load data were collected with a systematic manner from a survey of a refrigeration stores. Using the collected floor live load survey data, the basic statistics, a histogram of the uniformly distributed loads, and the equivalent uniformly distributed loads are computed for various structural members. Based on the above results, the maximum values of a combined live loads during the design life have been estimated and compared with current design live loads. The ultimate goals of this study are to develop probabilistic live load models to analyze survey data of domestic refrigeration stores, and to propose design live loads for structural types.

  • PDF

최소 선면쌍동선 구조설계에 대한 고찰 (Examination of the structural design for SWATH ship)

  • 박명규;신영식
    • 해양환경안전학회지
    • /
    • 제1권1호
    • /
    • pp.95-106
    • /
    • 1995
  • The small-waterplane-area-twin-hull(SWATH) ship has been recognized as a promising high performance ship because of her superior seakeeping characteristics and large deck area for various operations compared to the conventional monohull ship. significant advances in analytical technics for the prediction of the ship motions, wave loads and structural responses, structural fatigue and its prediction, and hull vibration for ship motions, wave loads and structural responses, structural fatigue and its prediction, and hull vibration for SWATH ship have been much developed during the last twenty years. Based on these developments in technology an integrated computational procedures for prediction wave loads and structural responses can be used to get a accurate results. But the major problem of SWATH ship's structural design is the accurate prediction of structural responses by the maximum critical loads likely to be experienced during the life of SWATH. To get a easier and safer computational procedures and the analytical approach for determining the accurate structural responses, a case study has been presented through the project experienced.

  • PDF

Equivalent static wind loads for stability design of large span roof structures

  • Gu, Ming;Huang, Youqin
    • Wind and Structures
    • /
    • 제20권1호
    • /
    • pp.95-115
    • /
    • 2015
  • Wind effects on roofs are usually considered by equivalent static wind loads based on the equivalence of displacement or internal force for structural design. However, for large-span spatial structures that are prone to dynamic instability under strong winds, such equivalent static wind loads may be inapplicable. The dynamic stability of spatial structures under unsteady wind forces is therefore studied in this paper. A new concept and its corresponding method for dynamic instability-aimed equivalent static wind loads are proposed for structural engineers. The method is applied in the dynamic stability design of an actual double-layer cylindrical reticulated shell under wind actions. An experimental-numerical method is adopted to study the dynamic stability of the shell and the dynamic instability originating from critical wind velocity. The dynamic instability-aimed equivalent static wind loads of the shell are obtained.

Comprehensive Aeromechanics Predictions on Air and Structural Loads of HART I Rotor

  • Na, Deokhwan;You, Younghyun;Jung, Sung N.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.165-173
    • /
    • 2017
  • The aeromechanics predictions of HART I rotor obtained using a computational structural dynamics (CSD) code are evaluated against the wind tunnel test data. The flight regimes include low speed descending flight at an advance ratio of ${\mu}=0.151$ and cruise condition at ${\mu}=0.229$. A lifting-line based unsteady airfoil theory with C81 table look-up is used to calculate the aerodynamic loads acting on the blade. Either rolled-up free wake or multiple-trailer wake with consolidation (MTC) model is employed for the free vortex wake representation. The measured blade properties accomplished recently are used to analyze the rotor for the up-to-date computations. The comparison results on airloads and structural loads of the rotor show good agreements for descent flight and fair for cruise flight condition. It is observed that MTC model generally improves the correlation against the measured data. The structural loads predictions for all measurement locations of HART I rotor are investigated. The dominant harmonic response of the structural loads is clearly captured with MTC model.

학교교실의 적재하중에 관한 연구 (A Study on Live Loads in School)

  • 서극수;박성수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.61-69
    • /
    • 1994
  • The most fundamental elements in analyzing the structure of building are strength of maerials and value of loads. The applied loads of structural analysis in our country are classified into the dead and live loads. This study, with special reference to live load, is to suggest the stochastic character of live load and the appropriate live load by using the Monte-carlo Simulation method, one of the O. R(Operations Research) techniques acting on school buildings.

  • PDF

동하중에서 변환된 등가정하중에 의한 최적화 방법의 수학적 고찰 (Mathematical Proof for Structural Optimization with Equivalent Static Loads Transformed from Dynamic Loads)

  • 박경진;강병수
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.268-275
    • /
    • 2003
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. The dynamic loads are often transformed into static loads by dynamic factors, design codes, and etc. Therefore, the optimization results can give inaccurate solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple leading conditions which are not costly to include in modern structural optimization. In this research, it is mathematically proved that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition. At first, the solution of the new algorithm is mathematically obtained. Using the termination criteria, it is proved that the solution satisfies the Karush-Kuhn-Tucker necessary condition of the original dynamic response optimization problem. The application of the algorithm is discussed.

Time-variant structural fuzzy reliability analysis under stochastic loads applied several times

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.525-534
    • /
    • 2015
  • A new structural dynamic fuzzy reliability analysis under stochastic loads which are applied several times is proposed in this paper. The fuzzy reliability prediction models based on time responses with and without strength degeneration are established using the stress-strength interference theory. The random loads are applied several times and fuzzy structural strength is analyzed. The efficiency of the proposed method is demonstrated numerically through an example. The results have shown that the proposed method is practicable, feasible and gives a reasonably accurate prediction. The analysis shows that the probabilistic reliability is a special case of fuzzy reliability and fuzzy reliability of structural strength without degeneration is also a special case of fuzzy reliability with structural strength degeneration.

내재해성이 우수한 비닐하우스골조 구조시스템 개발에 관한 연구 (A study on Development of Stress Tolerant Structural System in the Frame of Greenhouses)

  • 심종석;이춘호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권1호
    • /
    • pp.5-13
    • /
    • 2012
  • The frame of pipe greenhouses in Korea have been collapsed increasingly due to very weak in structure caused by the heavy snow and strong wind. In order to reduce the collapse of green houses, it is urgent to develop the new structural system in stress tolerant greenhouses. Therefore, this paper performed the structural analysis of greenhouse frame in accordance with snow loads and wind loads. Three type models in structural frame configuration of greenhouses, that is, existing type, diagrid type, and honeycomb type are selected. It was classfied the section shape of structural frames in greenhouses into arch style, standard style, and diagonal standard style. As a result of this paper, it was verified that the structural system of diagrid type is better than that of existing type against snow loads and wind loads in the frame of greenhouses.