• Title/Summary/Keyword: structural joints

Search Result 978, Processing Time 0.022 seconds

Proposal of Applying the Exercise Program for the Prevention of Work-related Chronic Low Back Pain

  • Yang, Yeong-Ae;Kim, Seong-Su;Hur, Jin-Gang;An, Sun-Joung;Kim, Hee-Soo;Cha, Su-Min;Heo, Jun;Park, Yun-Hee;Park, Bo-Ra
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.571-579
    • /
    • 2011
  • Objective: The purpose of this research is to provide exercise programs for the prevention of work related chronic back pain. Background: In order to prevent musculoskeletal disease, including proper medical care health promotion programs are needed. Method: This is a research of musculoskeletal disease looking at 618 workers working at a car engine manufacturing factory from April to July of 2008. Through questionnaire specific areas of musculoskeletal diseases experienced by the workers were identified and preventative exercise program for chronic low back pain was recommended. Result: Research showed that of the musculoskeletal disease experienced by the workers, 197 presented with low back pain, 171 presented with shoulder pain, 64 presented with neck pain and 44 presented with knee pain. The symptoms of low back pain included stiffness(143), twinge and burning sensation(24) and absence of sensation(19). Using this result 4 types of exercise programs were recommended for prevention of chronic low back pain. Conclusion: Preventative exercise programs recommended for the workers in this research is easily accessible for the workers. Use of the suggested exercise programs will inevitably decrease work related low back pain. Also 2 other recommendations were made: 1) Internal structural change may be necessary using ergonomics. 2) More exercise programs to be used to increase adaptation and tolerance of joints and muscles that are constantly used for repetitive work. Application: This study can be used to provide for the prevention of work-related Chronic Low Back pain.

A Study on the Exteriority of Interior in the Louis I. Kahn's Architecture - Focused on the Study of Character of Connecting Elements - (루이스 칸 건축의 외부화된 내부에 관한 연구 - 연결공간의 체험과 표현을 중심으로 -)

  • Woo, Young-Sun;Shin, Buhm-Shik
    • Journal of architectural history
    • /
    • v.14 no.4 s.44
    • /
    • pp.117-135
    • /
    • 2005
  • This paper is a study of the possibility of experience and expression in the architecture of Louis I. Kahn by focusing on the characters of entrance, court and window/wall of his public buildings. In the course of composition, Kahn defined the entrance, court and window/wall as an connecting elements and elements of boundary. The characters revealed by these elements or rooms give the clue to insight Kahn's thought of relation of interior and exterior space or inner and outer space. Following are the characters of these elements. First, a entrance reveals the fact that inner space separates from outer space by connecting these two space and giving the value to inner space as the entity and totality like outer space. The entrance gives its ontological being to human subjects not by vision but experience and expression which is the essence of commonness, that is, Silence. Kahn made the possibility of activity amplify in this common and silent space. Second, this entrance is connected with wide and huge central space not individual spaces of interior space. This extreme procedure of entering makes human subject feel sublime of intoner space. And the central spaces becomes another exterior or another world in the inner world of architecture by the lights from above and by having the boundary wall which shows same pattern of exterior wall. Third, Kahn regarded a window as the giver of lights not as the medium of vision connecting inner space with outer. He tried to connect interior with exterior through the being and character of the light expressed in the interior. And in his buildings, interior space is connected with exterior by expressing the purpose of building, composition of inner space, structural truth and construction facts through the Form, a pattern of wall, details and ornamental joints. By practicing this thoughts in the real buildings, Kahn tried to gave aura to both the interior space and entity of architecture which is regarded as micro universe like flowers, rocks and human beings.

  • PDF

Experimental Investigation of Lateral Retrofitting Effect with CFRP and BRB (Buckling-Restrained Brace) for Beam-column Joints of Low-Rise Piloti Buildings (탄소섬유시트와 비좌굴 가새를 이용한 저층 필로티 구조물의 보-기둥 연결부의 횡방향 보강효과에 관한 실험적 연구)

  • Seo, Sang-Hoon;Yoo, Yeon-Jong;Lee, Young-Hak;Kim, Hee-Cheul;Lee, Ki-Hak;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • The purpose of this study is to evaluate the structural capacities of beam-column specimens retrofitted with CFRP sheet and BRB (Buckling-Restrained Brace) under sustained axial and cyclic lateral loads. Three specimens were made using different retrofitting methods : non-retrofitted, retrofitted with CFRP sheets only, and retrofitted with both CFRP sheet and BRB systems. Lateral load resistant capacities were evaluated based on the load-displacement relations. From the results, the maximum lateral forces of the FRP sheet retrofitted and both the FRP and BRB retrofitted specimens showed approximately 34% and 138% improvement, respectively, compared with the non-retrofitted specimen.

Materials and Methods in Usonian Automatic House System of Frank Lloyd Wright (라이트의 유소니언 오토매틱 주택 시스템에 나타난 재료 및 공법에 관한 연구)

  • Kim, Tai Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • This study is to investigate the meaning and value of Usonian Automatic House System(UAHS) of Frank Lloyd Wright in his later period, focused on materials, methods, and his thoughts. The results of this study are follows. UAHS was the outcome of moderate cost and prefab house which Wright had successively attempted after the early Prairie period. The construction was simple and comparatively cheap, but subsequent automatics were difficult and expensive to build. Nevertheless, it was sufficiently flexible to support a rather wide range of house designs. Concrete was the inert mass and a plastic material. Wright saw a kind of weaving coming out of it. He also saw a kind of concrete masonry, steel for warp and masonry units for woof in the automatic concrete block. The reinforced bars in hollowed joints of concrete block increased the safety factor and affected the expression of the construction through the stabilization they provided. But they did not give concrete block the capability of structural span. Standardization as the soul of the machine might be seen in UAHS. The concrete blocks were more cheap, lighter, and larger hollowed plain than textile blocks in 1920s. But the variety of pattern and different block types in the UAHS were achieved at some sacrifice of standardization. The repetitive nature of production was compromised for artistic goals. The sense of compromise was not maximized, however, because the units as installed looked far more repetitive than they actually were.

Three dimensional analysis of reinforced concrete frames considering the cracking effect and geometric nonlinearity

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.163-180
    • /
    • 2009
  • In the design of tall reinforced concrete (R/C) buildings, the serviceability stiffness criteria in terms of maximum lateral displacement and inter-story drift must be satisfied to prevent large second-order P-delta effects. To accurately assess the lateral deflection and stiffness of tall R/C structures, cracked members in these structures need to be identified and their effective member flexural stiffness determined. In addition, the implementation of the geometric nonlinearity in the analysis can be significant for an accurate prediction of lateral deflection of the structure, particularly in the case of tall R/C building under lateral loading. It can therefore be important to consider the cracking effect together with the geometric nonlinearity in the analysis in order to obtain more accurate results. In the present study, a computer program based on the iterative procedure has been developed for the three dimensional analysis of reinforced concrete frames with cracked beam and column elements. Probability-based effective stiffness model is used for the effective flexural stiffness of a cracked member. In the analysis, the geometric nonlinearity due to the interaction of axial force and bending moment and the displacements of joints are also taken into account. The analytical procedure has been demonstrated through the application of R/C frame examples in which its accuracy and efficiency in comparison with experimental and other analytical results are verified. The effectiveness of the analytical procedure is also illustrated through a practical four story R/C frame example. The iterative procedure provides equally good and consistent prediction of lateral deflection and effective flexural member stiffness. The proposed analytical procedure is efficient from the viewpoints of computational effort and convergence rate.

Seismic Performance Evaluation of Non-Seismic Reinforced Concrete Buildings Strengthened by Perimeter Steel Moment Frame (철골 모멘트골조로 보강된 철근콘크리트 건물의 내진성능 평가)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.233-241
    • /
    • 2020
  • This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.

Evaluation on Clamping Force of High Strength Bolts By Coating Parameters of Faying Surfaces (고력볼트 접합부표면의 방식도장변수에 따른 체결력 평가)

  • Nah, Hwan Seon;Lee, Hyeon Ju
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.48-55
    • /
    • 2012
  • Clamping force of a high strength bolt is reduced by a certain period of time after the initial set-up. In case of special treatments on faying surfaces such as protective coating, clamping force is relaxed more severely. Tests for slip critical joints subject to various faying surface parameters were conducted. Five different surface treatments were tested including mill scale surface, blast surface, rust surface and coated surfaces. Each specimen was composed of F10T M20 of high strength bolts and steel plates. Based on the result of slip coefficient test, blast treatment surface showed 0.59, rust treatment surface showed 0.54 and inorganic zinc treatment surface exhibited 0.44. Clean mill treatment surface and red lead paint treatment surface were 0.23, 0.21 respectively. It is identified that the slip coefficient in Korean structural design guide should be determined for various surface conditions. Subsequently from long term relaxation test of ASTM A 490 high strength bolts, relaxation of no-coated surfaces such as blast, clean mill, rust treatment, the loss of initial clamping load was 10.5%, 13.6% and 7.9% for 1,000 hours, while the loss of initial clamping force was reached as 15.0%, 18.7% more than the required redundancy 10% in case of inorganic zinc and red lead painted treatment. It is required that the limit of relaxation on coated faying surface should be established separately for various surfaces.

Interface Shear Strength in Half Precast Concrete Slab (반두께 P.C. 슬래브의 면내전단내력에 관한 연구)

  • 이광수;김대근;최종수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.161-168
    • /
    • 1994
  • Half-P.C. slab system is the composite structural system which utilizes precast concrete for lower portion and cast in situ concrete for upper portion slab. When the composite slab using Half P.C. slab is deformed by flexural moment, horizontal shear happened at the interface between Half P.C. slab and topping concrete. To resist horizontal shear strength a scratch method has tried. To determine ultimate interface shear strength, shear stress, and shear coefficient, high and normal strength concrete are used for topping concrete. Major variables are compressive strength of topping concrete with or without shear reinforcement, quantitative roughness of the P.C. :surface and tie or untie of the stud with welded deformed wire fabric in the P.C. member. The Icross sectional area on joints is 3,200 $cm^2$ in all specimens. Test results showed that shear stress increased, as the depth of the quantitative roughness increased. The horizontal shear strength could be resisted with safe by the quantitative roughness without shear tie. A shear coefficient determinant equation is proposed such that K = 0.025918 + 0.0068894$\cdot$R – 0.000182354${\cdot}R^2$

Rapid full-scale expansion joint monitoring using wireless hybrid sensor

  • Jang, Shinae;Dahal, Sushil;Li, Jingcheng
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.415-426
    • /
    • 2013
  • Condition assessment and monitoring of bridges is critical for safe passenger travel, public transportation, and efficient freight. In monitoring, displacement measurement capability is important to keep track of performance of bridge, in part or as whole. One of the most important parts of a bridge is the expansion joint, which accommodates continuous cyclic thermal expansion of the whole bridge. Though expansion joint is critical for bridge performance, its inspection and monitoring has not been considered significantly because the monitoring requires long-term data using cost intensive equipment. Recently, a wireless smart sensor network (WSSN) has drawn significant attention for transportation infrastructure monitoring because of its merits in low cost, easy installation, and versatile on-board computation capability. In this paper, a rapid wireless displacement monitoring system, wireless hybrid sensor (WHS), has been developed to monitor displacement of expansion joints of bridges. The WHS has been calibrated for both static and dynamic displacement measurement in laboratory environment, and deployed on an in-service highway bridge to demonstrate rapid expansion joint monitoring. The test-bed is a continuous steel girder bridge, the Founders Bridge, in East Hartford, Connecticut. Using the WHS system, the static and dynamic displacement of the expansion joint has been measured. The short-term displacement trend in terms of temperature is calculated. With the WHS system, approximately 6% of the time has been spent for installation, and 94% of time for the measurement showing strong potential of the developed system for rapid displacement monitoring.

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.