• Title/Summary/Keyword: structural holes

Search Result 232, Processing Time 0.027 seconds

Structural and Textural Characteristics of Egg Custard with Soused Shrimp Juice (새우젓국물 첨가에 따른 알찜의 구조 및 질감에 관한 연구)

  • 배영희
    • Korean journal of food and cookery science
    • /
    • v.9 no.4
    • /
    • pp.303-307
    • /
    • 1993
  • Structural and textural characteristics of egg custard with 1.5ft sodium chloride as salt or soused shrimp juice were investigated by SEM, texturometer and sensory evaluation.: 1. Egg custard without sodium chloride showed flat, crosslinkaged structure and no pores. : but the addition of salt or soused shrimp juice developed much of round pores and smooth walls. 2. There were significant difference in hardness between without sodium chloride group and boiled soused shrimp juice group. 3. there were significant difference in appearance, taste and texture, but flavor and total acceptability did not showed significant difference in preference test. In discriminating test, swellness, softness, flavor, color, holes and hardness were important factors affecting the preference to determine the characteristics of egg custard.

  • PDF

An Experimental Study on Structural Capacity of Joint Between Composite PHC Wall Pile and Bottom Slab with CT Shear Connector (CT형강 전단연결재가 적용된 합성형 PHC벽체파일-하부슬래브 연결부 성능에 관한 실험적 연구)

  • Mha, Ho Seong;Won, Jeong Hun;Lee, Jong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2013
  • This paper investigated the structural capacity of the CT shear connectors, which is a kind of the perfobond rib and functions as an anchor transferring the tension force in the joint between a composite PHC wall pile and a bottom slab. The direct pull-out test was performed for various specimens. From failure modes and load-displacement curves, it was found that transverse rebars should be placed to holes in a web to restrict pull-out failure of CT shear connectors. The results of additional tests for specimens with transverse rebars and various support lengths indicated that all specimens were failed by the tension failure of PHC pile before pull-out failure of CT shear connector and concrete pull-out failure. Thus, the CT shear connector could endure the tension force between the PHC wall pile and the bottom slab.

Effect of Cutout Orientation on Stress Concentration of Perforated Plates with Various Cutouts and Bluntness

  • Woo, Jin-Ho;Na, Won-Bae
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.95-101
    • /
    • 2011
  • Perforated plates with cutouts (or holes) are widely used in structural members. These cutouts provide stress concentration in plates. Extensive studies have been carried out on stress concentration in perforated plates, which consider cutout shapes, boundary conditions, bluntness of cutouts, and more. This study presents stress concentration analyses of perforated plates with not only various cutouts and bluntness but also different cutout orientations. Especially, the effect of cutout orientation on stress concentration is emphasized since structural members have become more complicated recently. To obtain stress concentration patterns, a finite element program, ANSYS, is used. For the designated goal, three parameters are considered as follows: the shapes of polygonal cutouts (circle, triangle, and square), bluntness (a counter measure of radius ratio, r/R), and rotation of cutouts (${\theta}$). From the analyses, it is shown that, in general, as bluntness increases, the stress concentration increases, regardless of the shape and rotation. A more important finding is that the stress concentration increases as the cutouts become more oriented from the baseline, which is the positive horizontal axis (+x). This fact demonstrates that the orientation is also a relatively significant design factor to reduce stress concentration. In detail, in the case of the triangle cutout, orienting one side of the triangle cutout to be perpendicular to the applied tensile forces is preferable. Similarly, in the case of the square cutout, it is more advantageous to orient two sides of square cutout to be perpendicular to the applied tensile force. Therefore, at the design stage, determining the direction of a major tensile force is required. Then, by aligning those polygon cutouts properly, we can reduce stress concentration.

A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials (일방향 응고 재료의 결정립 성장 방향 섭동이 고압터빈 노즐 저주기 피로 수명에 미치는 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.653-658
    • /
    • 2016
  • High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

Level Set based Shape Optimization Using Extended B-spline Bases (확장 B-스플라인 기저함수를 이용한 레벨셋 기반의 형상 최적설계)

  • Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.239-245
    • /
    • 2008
  • A level set based topological shape optimization using extended B-spline basis functions is developed for steady-state heat conduction problems. The only inside of complicated domain identified by the level set functions is taken into account in computation, so we can remove the effects of domain outside parts in heat conduction problem. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. Using topological derivative concept, the nucleation of holes for topological changes can be made whenever and wherever necessary during the optimization.

Rapid cooling of injection mold for high-curvature parts using CO2 cooling module (CO2 냉각모듈을 적용한 고곡률 성형품의 사출금형 급속냉각)

  • Se-Ho Lee;Ho-Sang Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2022
  • Injection molding is a cyclic process comprising of cooling phase as the largest part of this cycle. Providing efficient cooling in lesser cycle times is of significant importance in the molding industry. Recently, lots of researches have been done for rapid cooling of a hot-spot area using CO2 in injection molding. The CO2 flows under high pressure through small, flexible capillary tubes to the point of use, where it expands to create a snow and gas mixture at a temperature of -79℃. The gaseous CO2 removes heat from the mold and releases it into the atmosphere. In this paper, a CO2 cooling module was applied to an injection mold in order to cool a large area cavity uniformly and quickly, and the cooling performance of the injection mold was investigated. The product was a high-curvature molded part with a molding area of 300x100mm. Heat cartridges were installed in a stationary mold, and CO2 cooling module was inserted inside a movable mold. Through structural analysis, it was confirmed that the maximum deformation of mold with CO2 cooling module was 0.09mm. A CO2 feed system with a heat exchanger was used for cooling experiments. The CO2 was injected into the holes on both sides of the supply pipe of the cooling module and discharged through hexagon blocks to cool the mold. It took 5.8 seconds to cool the mold from an average temperature of 140℃ to 70℃. Through the experiment using CO2 cooling module, it was found that a cooling rate of up to 12.98℃/s and an average of 10.18℃/s could be achieved.

Building Disaster Communication Network to Protect Foreign Knowledge Workers from Disasters (외국인 지식노동자 보호를 위한 재난통신 네트워크 구축에 관한 개념적 연구)

  • Oh, Nam-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.107-115
    • /
    • 2022
  • This study discusses how to protect foreign knowledge workers from disasters conceptually. While their prestigious social and economic status, the knowledge workers can become vulnerable to disasters due to their nomadic lifestyle and voluntary isolation from communities where they reside temporarily. This study introduced and discussed strengths and weaknesses of various types of disaster communication networks and found the Small World Network (SWN) and the use of structural holes would be an appropriate strategy for the protection of knowledge workers. The use of mediators for disaster communication would be a strategic intervention from public and private organizations since that addresses voluntary isolation issue without restructuring existing disaster communication network.

Ultrastructure of the Follicular Oocyte Surface in Rana dybowskii

  • Ju, Jung-Won;Im, Wook-Bin;Kwon, Hyuk Bang;Choi, Hueng-Sik
    • Animal cells and systems
    • /
    • v.5 no.1
    • /
    • pp.45-50
    • /
    • 2001
  • Rana ovarian follicles consist of oocyte, vitelline envelope, granulosa cells, and theca/epithelial layer. Using scanning electron microscopy, the surface structure of each follicular component was investigated. Changes in oocyte surface during oocyte maturation were also examined. Theca/epithelial layer was almost transparent and some blood vessels and granulosa cells were observed underneath in intact follicle. The number of granulosa cells was estimated to be 6700-7200 per oocyte. The granulosa cells partially overlapped each other and their microvilli penetrated the vitelline membrane via holes present in the vitelline envelope and seemed to be linked to oocyte microvilli. After removal of the vitelline envelope by microforcep, oocyte microvilli were observed on the surface of the devitellined oocyte. The oocyte microvilli formed partial clusters on the surface of white spot area which appears iust before germinal vesicle breakdown (GVBD), whereas they were evenly distributed in other areas. The microvilli became shorter and less dense with oocyte maturation. The lengths of oocyte microvilli in the immature and mature oocyte were 1.5 $\mu$m and 0.6 $\mu$m, respectively. The present study suggests a fundamental structural change occurring on the oocyte surface during maturation.

  • PDF

Improvement of Durability and Reliability by Developing a Bi-axial Test Process of Road Wheel (차량 로드 휠의 복합축 평가 프로세스 구축을 통한 내구신뢰성 강건화 및 주행안정성 향상)

  • Chung, Soo Sik;Yoo, Yoen Sang;Kim, Dae Sung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • The steel road wheel on ventilation holes was cracked in the vehicle durability test. But the component durability test by uni-axial, CFT(Cornering Fatigue Test) and RFT(Radial Fatigue Test) had been satisfied. That is, the uni-axial component test could not forecast the crack of vehicle. Therefore this study developed the bi-axial test mode to reflect a vehicle condition(to reflect both vertical and lateral force simultaneously) based on real load data which was measured in Europe and China and developed CAE simulation too. It reproduced the cracks same as vehicle's and verified by bi-axial test machine in the LBF(Fraunhofer Institute for Structural Durability and System Reliability) durability research center in Germany. Finally this the durability CAE simulation by using HMC(Hyundai Motor Company)'s the bi-axial test mode predicts feasibly the steel wheel's durability performance before vehicle durability test.

Stress Analysis with respect to the change of the Shape of Screw Blade and the Hole for Centrifuge (원심분리기용 스크류의 블레이드 및 원공형상변화에 따른 음력해석)

  • 이성욱;심재준;한동섭;한근조;안찬우;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.749-752
    • /
    • 2002
  • In this study, we carried out the finite element analysis about screw that is the weakest part of the centrifuge for sewage management. Structural analysis was done with respect to the change of outer radius and thickness of screw blade and screw with sewage discharge hole. If the area of circular hole is equal to that of extended holes, maximum equivalent stress was compared between hole and extended hole. Centrifugal force on account of rotation of 4000 rpm was applied the screw. The results are as follows : 1 . When the larger radius and thickness of screw blade was used, the higher maximum equivalent stress is occurred. 2. When the larger radius of sewage discharge hale was used, the higher maximum equivalent stress is occurred. 3. When the longer parallel part length of extended hole was used, the higher maximum equivalent stress is occurred. 4. If the extended hole with the same discharging area which circular hole uses, the maximum equivalent stress is lower.

  • PDF