• Title/Summary/Keyword: structural fire

Search Result 738, Processing Time 0.023 seconds

The Influence of Acrylic Resin Solution Concentration on Properties of Recycled Fine Aggregate (아크릴 수지 농도 차이가 순환잔골재의 물성에 미치는 영향)

  • Kkot-Nim Park;Ji-Hyun Kim;Chul-Woo Chung;Young-Chan Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • Recently, the use of recycled aggregates from construction waste has been introduced as a solution for environmental problems and aggregate shortage. In spite of the various methods to promote recycling of recycled aggregate, the use of recycled aggregate as the structural aggregate has been limited because the quality of recycled aggregate(especially recycled fine aggregate) has been considered lower than that of natural aggregate. In this work, recycled fine aggregate was immersed for an hour in acrylic resin solutions of various concentrations to improve its quality, the appropriate immersion concentration was selected by measuring the absorption capacity and skeletal density of the recycled fine aggregate, and mortar specimens were prepared to evaluate the mechanical performance in order to propose a applicable treatment process to promote the use of recycled fine aggregate. According to the experimental results, as the acrylic resin concentration increased, the absorption capacity and skeletal density of the recycled fine aggregate decreased. The absorption capacity was lowest at acrylic resin concentrations around 6 to 8 %. However, among mortar specimens made of recycled fine aggregate immersed in acrylic resin solution, the compressive strength was the highest at 4 % acrylic resin concentration, suggesting that the use of higher concentration acrylic resin solution can actually lower the compressive strength of mortar.

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash (폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법)

  • Lee, Bang Yeon;Bang, Jin Wook;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.118-125
    • /
    • 2013
  • The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.

Safety evaluation of type B transport container for tritium storage vessel (B형 삼중수소 운반용기 안정성 평가)

  • Lee, Min-Soo;Paek, Seung-Woo;Kim, Kwang-Rag;Ahn, Do-Hee;Yim, Sung-Paal;Chung, Hong-Suk;Choi, Heui-Joo;Choi, Jeong-Won;Son, Soon-Hwan;Song, Kyu-Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.155-169
    • /
    • 2007
  • A transport container for a 500 kCi tritium storage vessel was developed, which could be used for the transport of metal tritide from Wolsong TRF facility to a disposal site. The structural, thermal, shielding, and confinement analyses were performed for the container in a view of Type B. As a result of structural analysis, the developed container sustained its integrity under normal and accidental conditions. The maximum temperature increase of the inner storage vessel by radiation was evaluated at $134.8^{\circ}C at room temperature. In $800^{\circ}C$ fire test, The thermal barrier of container sustained the inner vessel at $405^{\circ}C after 30 min, which temperature was allowable for the container integrity since maximum design temperature of inner vessel was $550^{\circ}C. In the evaluation of the shielding, the activity of radiation was nearly zero on the outer surface of inner vessel. Consequently the transport container for a 500 kCi tritium was evaluated to pass all the safety tests including accidental condition, so it was concluded that the designed transport container is proper to be used.

  • PDF

Structural Safety Evaluation of Cable Stayed Bridge based on Cable Damage Scenarios (사장교 케이블 손상 사나리오에 따른 구조 안전 수준 평가)

  • Kim, Ga Young;Seo, Dong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.105-111
    • /
    • 2018
  • This study aims to evaluate the safety for cable stayed bridge due to damages on the cable system. Many cable supported bridges, including cable stayed bridge and suspension bridge, have been built in the Korean peninsula. This requires efficient maintenance and management since this structure has complex structural components and system. This large structure also often faces risks either from manmade or natural phenomenon. In 2015 one cable-stayed bridge in South Korea had been struck by a bolt of lightning on the cables. This event had led to fire on cables. These cables had been damaged and putting the bridge at risk. This bridge was back in used after a few weeks of investigations and replacements of the cables. However, enormous social and economic expense were paid for recovery. After this event risk based management for infra structures is required by public demands. Therefore, this study was initiated and aimed to evaluate risks on the cable system due to potential damages. In this paper one cable-stayed bridge in South Korea was selected and investigated its safety based on the damage scenarios of cable system for efficient and prompt management, and for supporting decision making. FEM analysis was conducted to evaluate the safety of the bridges due to damages on the cable system.

Numerical Simulation of Crash Impact Test for Fuel Tank of Rotorcraft (회전익항공기용 연료탱크 충돌충격시험 수치모사 연구)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee;Kim, Kyung-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.521-530
    • /
    • 2011
  • Since aircraft fuel tanks have many interfaces connected to the airframe as well as the fuel system, they have been considered as one of the system-dependent critical components. Crashworthy fuel tanks have been widely implemented to rotorcraft and rendered a great contribution for improving the survivability of crews and passengers. Since the embryonic stage of military rotorcraft history began, the US army has developed and practised a detailed military specification documenting the unique crashworthiness requirements for rotorcraft fuel tanks to prevent most, hopefully all, fatality due to post-crash fire. The mandatory crash impact test required by the relevant specification, MIL-DTL-27422D, has been recognized as a non-trivial mission and caused inevitable delay of a number of noticeable rotorcraft development programs such as that of V-22. The crash impact test itself takes a long-term preparation efforts together with costly fuel tank specimens. Thus a series of numerical simulations of the crash impact test with digital mock-ups is necessary even at the early design stage to minimize the possibility of trial-and-error with full-scale fuel tanks. In the present study the crash impact simulation of a few fuel tank configurations is conducted with the commercial package, Autodyn, and the resulting equivalent stresses and internal pressures are evaluated in detail to suggest a design improvement for the fuel tank configuration.

A Study on the Turnover Intention of Salespeople in Insurance Distribution Channels (보험유통채널에서 영업사원의 이직의도에 관한 연구)

  • Ryu, Gayeon;Kim, Dong-Hyun;Cha, Jae-Bin
    • Journal of Distribution Science
    • /
    • v.16 no.7
    • /
    • pp.77-86
    • /
    • 2018
  • Purpose - In the insurance distribution channel, the salespeople plays a role of representing the company, and recognizes the needs of the customers and plays a role in responding to them. Therefore, their turnover can have a great influence on the company performance. The purpose of this study is to investigate the structural relationship between salespeople's personal - environmental fit and organizational commitment and turnover intention. Research design, data, and methodology - Data collection was conducted a self-filling questionnaire for salespeople for about one month from July 24, 2017 to August 30, 2017. The subjects of the questionnaire were the insurance salespeople who work in the sales line such as K life, S fire. A total of 450 copies were distributed and 432 copies of the questionnaire were used for final analysis. The analysis program used SPSS 22.0 and AMOS 22.0 programs. Analysis method was Frequency Analysis, Reliability & Confirmatory Factor Analysis, Correlation Analysis and Structural Equation Model(SEM). Results - As a result of Hypothesis 1, Person-Supervisor Fit had significant influence only on Continuance Commitment. Person-Job Fit did not have a significant effect on Organizational Commitment. Person-Coworker Fit had a significant effect on Continuance Commitment and Affective Commitment. Person-Organization Fit had a significant impact on Affective Commitment. Therefore, only , , , , were adopted. As a result of Hypothesis 2, Continuance Commitment had a significant effect on turnover intention. Therefore, only was adopted. Conclusions - This study suggests that it is necessary to manage the human resources in the sales field through studies related to salespeople's extension of the research scope and salespeople's turnover intention. Based on the results of this study, the conclusion suggests some implications for the efficient human resources management of insurance companies in sales channels. It is expected that it will be helpful for the salespeople to find out what kind of Person-Environment Fit affects the organizational commitment and how to manage the organizational commitment among the three dimensions of organizational commitment to reduce turnover intention.

Model for the Structural Relationships of Behavioral Attitude, Subjective Norm and Perceived Behavioral Control to Safety Intention and Safety Behavior in 119 Emergency Medical Technicians (119구급대원의 행위태도, 주관적 규범 및 지각된 행위 통제가 안전의도, 안전행동에 미치는 영향에 관한 구조적 관계 모형)

  • Moon, Tae-Young;Choi, Mi-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.215-224
    • /
    • 2018
  • The purpose of the this study was to verify a model for the structural relationships of the behavioral attitude, subjective norm and perceived behavioral control of 119 emergency medical technicians to their safety attitude and safety behavior. A survey was conducted on 373 male and female 119 emergency medical technicians who were working as fire-fighting officers in Seoul, Inheon, Gangwon Province, Daegu, South Chungcheong Province, North Gyeongsang Province and Busan. The collected data were statistically analyzed by SPSS 20.0 and AMOS 16.0. The findings of the study were as follows: First, the behavioral attitude of the 119 emergency medical technicians was found to have affected and safety behavior(t=.32, p<.001). Second, the subjective norm of the 119 emergency medical technicians was found to have exerted an influence on their safety attitude and safety behavior(t=.27, p<.001). Third the perceived behavioral control of the 119 emergency medical technicians was found to have influenced their safety attitude and safety behavior(t=.28, p<.001). Fourth, the safety attitude of the 119 emergency medical technicians was found to have had an impact on their safety behavior(t=.39, p<.001).

Change of Statical Behavior and Ultimate Capacity of Steel Cable-stayed Bridges after Cable Failure (케이블 단선 후 강사장교의 구조 및 극한 거동 변화)

  • Kim, Seung-Jun;Choi, Jun-Ho;Won, Deok-Hee;Han, Taek-Hee;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.747-761
    • /
    • 2011
  • This paper presents an investigation on the change in the statical behavior and the ultimate capacity of steel cable-stayed bridges after cable failure. Cable failure can occur due to fire, direct vehicle clash accidents, cable or anchorage fatigue, and so on. Moreover, the cable may be temporarily disconnected during cable replacement work. When cable failure occurs, the load, that was supported by the broken cable is first transferred to another cable. Then the structural state changes due to the interaction between the girder, mast, and cables. Moreover, it can be predicted that the ultimate capacity will decrease after cable failure, because of the loss of the support system. In this study, the analysis method is suggested to find the new equilibrium state after cable failure based on the theory of nonlinear finite element analysis. Moreover, the ultimate analysis method is also suggested to analyze the ultimate behavior of live loads after cable failure. For a more rational analysis, a three-step analysis procedure is suggested and used, which consisted of initial shape analysis, cable failure analysis, and live load analysis. Using this analysis method, an analytical study was performed to investigate the changes in the structural state and ultimate behavior of steel cable-stayed bridges.

Experimental Study on Strength of Austentic Stainless Steel (STS 304L) Fillet-Welded Connection with Weld Metal Fracture According to Welding Direction (용접방향에 따른 오스트나이트계 스테인리스강(STS304L) 용착금속파단 용접접합부의 내력에 관한 실험적 연구)

  • Kim, Tae Soo;Lee, Hoochang;Hwang, Bokyung;Cho, Taejun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Austenitic stainless steels have excellent corrosion resistance, durability and fire resistance. Especially, since STS304L among austenitic types is a low-carbon variation of STS304 and has excellent intergranular corrosion resistance, it can often be used under the welded condition without heat treatment after field welding. This paper investigated ultimate behaviors such as ultimate strength and weld metal fracture mechanism of STS304L fillet-welded connections with TIG(tungsten inert gas) welding through test results. Main variables of specimens are weld length and welding direction against loading. Fracture of specimens are classified into three modes(tensile fracture, shear fracture and block shear fracture). Ultimate strengths were compared according to the welding direction and weld length and TFW series with transverse fillet weld had the highest strength compared with other types(LFW series with longitudinal fillet weld and FW series with all round weld). It is known that current design specifications such as KBC 2016 and AISC2010 underestimated the strength of TFW and LFW specimens and provided unconservative estimates for FW specimens. Finally, strength equations were proposed considering material properties of STS 304L material.

A Study on Configuration Optimization for Rotorcraft Fuel Cells based on Neural Network (인공신경망을 이용한 연료셀 형상 최적화 연구)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • Crashworthy fuel cells have been widely implemented to rotorcraft and rendered a great contribution for improving the survivability of crews and passengers. Since the embryonic stage of military rotorcraft history began, the US army has developed and practised a detailed military specification documenting the unique crashworthiness requirements for rotorcraft fuel cells to prevent most fatality due to post-crash fire. Foreign manufacturers have followed their long term experience to develop their fuel cells, and have reflected the results of crash impact tests on the trial-and-error based design and manufacturing procedures. Since the crash impact test itself takes a long-term preparation efforts together with costly fuel cell specimens, a series of numerical simulations of the crash impact test with digital mock-ups is necessary even at the early design stage to minimize the possibility of trial-and-error with full-scale fuel cells. In the present study a number of numerical simulations on fuel cell crash impact tests are performed with a crash simulation software, Autodyn. The resulting equivalent stresses are further analysed to evaluate a number of appropriate design parameters and the artificial neural network and simulated annealing method are simultaneously implemented to optimize the crashworthy performance of fuel cells.