• Title/Summary/Keyword: structural feasibility

Search Result 700, Processing Time 0.024 seconds

Mechanical Properties of Mortar Containing Bio-Char From Pyrolysis (바이오숯을 함유한 모르타르의 역학적 특성)

  • Choi, Won Chang;Yun, Hyun Do;Lee, Jae Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2012
  • Bio-char, obtained from biomass as a by-product of the pyrolysis process, is used successfully as a soil amendment and carbon sequester in this limited study. Recent and active research from literatures has extended the application of bio-char in the industry to promote sustainability and help mitigate the negative environmental impacts caused by carbon emissions. This study aims to investigate the feasibility of high-carbon bio-char as a carbon sequester and/or admixture in mortar and concrete to improve the sustainability of concrete. This paper presents the experimental results of an initial attempt to develop a cement admixture using bio-char. In particular, the effects of the water retention capacity of bio-char in concrete are investigated. The chemical and mechanical properties (e.g., the chemical components, microstructure, concrete weight loss, compressive strength and mortar flow) are examined using sample mortar mixes with varying replacement rates of cement that contains hardwood bio-char. The experimental results also are compared with mortar mixes that contain fly ash as the cement substitute.

Hysteresis Characteristics of Buckling Restrained Brace with Precast RC Restraining Elements (조립형 프리캐스트 콘크리트 보강재를 가지는 비좌굴가새의 이력특성)

  • Shin, Seung-Hoon;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.72-84
    • /
    • 2016
  • The conventional brace system is generally accepted as the lateral load resisting system for steel structures due to efficient story drift control and economic feasibility. But lateral stiffness of the structure decreases when buckling happens to the brace in compression, so that it results in unstable structure with unstable hysteresis behavior through strength deterioration. Buckling restrained brace(BRB) system, in which steel core is confined by mortar/concrete-filled tube, represents stable behavior in the post-yield range because the core's buckling is restrained. So, seismic performance of BRB is much better than that of conventional brace system in point of energy absorption capacity, and it is applied the most in high seismicity regions as damper element. BRBs with various shaped-sections have been developed across the globe, but the shapes experimented in Korea are now quite limited. In this study, we considered built-up type of restraining member made up of precast reinforcement concrete and the steel core. we experimented the BRB according to AISC(2005) and evaluated seismic performances and hysteresis characteristics.

Development of Performance Prediction Method for Bridge and Tunnel Management Decision-making (교량 및 터널 시설물의 유지관리 의사결정을 위한 성능 예측 방법 개발)

  • Lee, Dong-Hyun;Kim, Ji-Won;Jun, Tae-Hyun;Jeong, Won-Seok;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • In this study, using the Cost Prediction Model and Performance Prediction Model have developed a way to estimate future management costs and performance for bridge and tunnel by Network Level. Studies to date have primarily focused on the single facility, it is difficult to apply to the analysis of the Network Level. This study, items used as an index of 'Special Act for the Safety Control of Public Structures' was added to Usability and Functionality to Status. Action period and annual budget for each facility can be estimated through the Basic and Advanced analysis. In addition, we verified the technical feasibility through case analysis.

Performance Based Evaluation of Concrete Material Properties from Climate Change Effect on Temperature and Humidity Curing Conditions (기후변화의 온도와 습도 양생조건에 따른 콘크리트 재료특성의 성능중심평가)

  • Kim, Tae-Kyun;Shin, Jae-Ho;Shin, Dong-Woo;Shim, Hyun-Bo;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.114-122
    • /
    • 2014
  • Currently, global warming has become a serious problem arising from the usage of fossil fuels such as coal and petroleum. Moreover, due to the global warming, heat wave, heavy snow, heavy rain, super typhoon are frequently occurring all over the world. Due to these serious natural disasters, concrete structures and infrastructures are seriously damaged or collapsed. In order to handle these problems, climate change oriented construction technology and codes are necessary at this time. Therefore, in this study, the validity of the present concrete mixture proportions are evaluated considering temperature and humidity change. The specimens cured at various temperature and humidity conditions were tested to obtain their compressive and split tensile strengths at various curing ages. Moreover, performance based evaluation (PBE) method was used to analyze the satisfaction percentage of the concrete cured at various condition. From the probabilistic method of performance evaluation of concrete performance, feasibility and usability can be determined for future concrete mix design.

Development of a Damage Monitoring Technique for Jacket-type Offshore Structures using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 활용한 재킷식 해양구조물의 손상 감지 기법 개발)

  • Park, Hyun-Jun;Koo, Ki-Young;Yi, Jin-Hak;Yun, Chung-Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.399-408
    • /
    • 2011
  • Development of smart sensors for structural health monitoring and damage detection has been advanced remarkably in recent years. Nowadays fiber optic sensors, especially fiber Bragg grating (FBG) sensors, have attracted many researchers' interests for their attractive features, such as multiplexing capability, durability, lightweight, electromagnetic interference immunity. In this paper, a damage detection approach of jacket-type offshore structures by principal component analysis (PCA) technique using FBG sensors are presented. An experimental study for a tidal current power plant structure as one of the jacket-type offshore structures was conducted to investigate the feasibility of the proposed method for damage monitoring. It has been found that the PCA technique can efficiently eliminate environmental effects from measured data by FBG sensors, resulting more damage-sensitive features under various environmental variations.

MLS-Based Finite Elements and a Proposal for Their Applications (MLS기반 유한요소와 그 응용에 관한 제언)

  • Cho, Young-Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.335-341
    • /
    • 2009
  • In this paper, review of developed MLS-based finite elements and a proposal for their applications are described. The shape functions and their derivatives of MLS-based finite elements are constructed using Moving-Least Square approximation. In MLS-based finite element, using the adequate influence domain of weight function used in MLS approximation, kronecker delta condition could be satisfied at the element boundary. Moreover, because of the characteristics of MLS approximation, we could easily add extra nodes at an arbitrary position in MLS-based finite elements. For these reasons, until now, several variable-node elements(2D variable element for linear case and quadratic case and 3D variable-node elements) and finite crack elements are developed using MLS-based finite elements concept. MLS-based finite elements could be extended to 2D variable-node triangle element, 2D finite crack triangle element, variable-node shell element, finite crack shell element, and 3D polyhedron element. In this paper, we showed the feasibility of 3D polyhedron element at the case of femur meshing.

Measurement of Liquid Oscillation in Tuned Liquid Dampers using a Laser Doppler Vibrometer (레이저진동계를 사용한 동조액체댐퍼의 액체 진동 측정)

  • Shin, Yoon-Soo;Min, Kyung-Won;Kim, Junhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.513-519
    • /
    • 2016
  • In this study, dynamic vertical displacement of liquid in the tuned liquid column damper(TLCD) is measured by a laser Doppler vibrometer(LDV) to overcome limitations of existing sensors and to leverage noncontact sensing. Addressing advantages of noncontact measurements, operational principles of the LDV to measure velocity and displacement of a target object in motion is explained. The feasibility of application of the LDV to measurement of liquid motion in the TLCD is experimentally explored. A series of shake table tests with the TLCD are performed to determine requirements of application of the LDV. Based on the experimental results, it is proved that the LDV works under the condition of adding dye to the liquid by increasing the intensity of reflected laser and thus validity is verified by comparison with a conventional wave height meter.

Kinematic Optimization and Experiment on Power Train for Flapping Wing Micro Air Vehicle (날갯짓 초소형 비행체의 끈을 이용한 동력 전달 장치에 대한 기구학적 최적화 및 실험)

  • Gong, Du-Hyun;Shin, Sang-Joon;Kim, Sang-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.289-296
    • /
    • 2017
  • In this paper, geometrical optimization for newly designed flapping mechanism for insect-like micro air vehicle is presented. The mechanism uses strings to convert rotation of motor to reciprocating wing motion to reduce the total weight and inertial force. The governing algorithm of movement of the mechanism is established considering the characteristic of string that only tensile force can be acted by string, to optimize the kinematics. Modified pattern search method which is complemented to avoid converging into local optimum is adopted to the geometrical optimization of the mechanism. Then, prototype of the optimized geometry is produced and experimented to check the feasibility of the mechanism and the optimization method. The results from optimization and experiment shows good agreement in flapping amplitude and other wing kinematics. Further research will be conducted on dynamic analysis of the mechanism and detailed specification of the prototype.

Robust optimization of reinforced concrete folded plate and shell roof structure incorporating parameter uncertainty

  • Bhattacharjya, Soumya;Chakrabortia, Subhasis;Dasb, Subhashis
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.707-726
    • /
    • 2015
  • There is a growing trend of considering uncertainty in optimization process since last few decades. In this regard, Robust Design Optimization (RDO) scheme has gained increasing momentum because of its virtue of improving performance of structure by minimizing the variation of performance and ensuring necessary safety and feasibility of constraint under uncertainty. In the present study, RDO of reinforced concrete folded plate and shell structure has been carried out incorporating uncertainty in the relevant parameters by Monte Carlo Simulation. Folded plate and shell structures are among the new generation popular structures often used in aesthetically appealing constructions. However, RDO study of such important structures is observed to be scarce. The optimization problem is formulated as cost minimization problem subjected to the force and displacements constraints considering dead, live and wind load. Then, the RDO is framed by simultaneously optimizing the expected value and the variation of the performance function using weighted sum approach. The robustness in constraint is ensured by adding suitable penalty term and through a target reliability index. The RDO problem is solved by Sequential Quadratic Programming. Subsequently, the results of the RDO are compared with conventional deterministic design approach. The parametric study implies that robust designs can be achieved by sacrificing only small increment in initial cost, but at the same time, considerable quality and guarantee of the structural behaviour can be ensured by the RDO solutions.

Behavior of Soft Ground Throughout Mock-up Test Using Low Self Weight Banking Method (경량성토 모형시험을 통한 연약지반상의 성토제체의 거동)

  • Kim, Sang Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.85-91
    • /
    • 2011
  • This study aims at evaluating feasibility of Bottom ash-mixed Foam Cement Banking(BFCB) Method on the enhancement of soft soil, which is developed to reduce self-weight of banking by applying bottom ash and foam. to cement slurry. In order to measure the behavior of soil when BFCB layer was covered to soft ground, a testing equipment for mock-up test was fabricated and phased loads were applied up to measurement of yielding and ultimate strengths as well as movement of ground particles. In addition, these measured values such as settlement and heaving were compared with ones of surface-hardening method prevailing on soil improvement. As the result through mock-up test, BFCB showed lower values of ground deformation, while wider range of deformation was observed in compare to the other method. And settlement and heaving were measured lower, which implies the method developed is very effective to applicability of soft ground.