DOI QR코드

DOI QR Code

Kinematic Optimization and Experiment on Power Train for Flapping Wing Micro Air Vehicle

날갯짓 초소형 비행체의 끈을 이용한 동력 전달 장치에 대한 기구학적 최적화 및 실험

  • Gong, Du-Hyun (Department of Mechanical and Aerospace Engineering, Seoul National Univ.) ;
  • Shin, Sang-Joon (Department of Mechanical and Aerospace Engineering, Seoul National Univ.) ;
  • Kim, Sang-Yong (Agency for Defense Development)
  • Received : 2017.06.16
  • Accepted : 2017.07.05
  • Published : 2017.08.31

Abstract

In this paper, geometrical optimization for newly designed flapping mechanism for insect-like micro air vehicle is presented. The mechanism uses strings to convert rotation of motor to reciprocating wing motion to reduce the total weight and inertial force. The governing algorithm of movement of the mechanism is established considering the characteristic of string that only tensile force can be acted by string, to optimize the kinematics. Modified pattern search method which is complemented to avoid converging into local optimum is adopted to the geometrical optimization of the mechanism. Then, prototype of the optimized geometry is produced and experimented to check the feasibility of the mechanism and the optimization method. The results from optimization and experiment shows good agreement in flapping amplitude and other wing kinematics. Further research will be conducted on dynamic analysis of the mechanism and detailed specification of the prototype.

본 논문에서는 곤충 모방 날갯짓 초소형 비행체에 적용될 끈을 이용한 날갯짓 구동 장치의 구동 원리와 그 최적화 과정이 소개된다. 이 날갯짓 구동 장치는 끈을 이용하여 구조의 경량화와 관성력 감소로 인한 에너지 효율 상승을 목적으로 설계되었다. 먼저 장력만 전달할 수 있는 끈의 특성을 고려하여 운동학적인 수식이 정립되었으며, 이를 통해 구동 장치의 거동 특성을 파악할 수 있었다. 이 수식들은 수정된 패턴 검색 최적화 과정에 포함되어 메커니즘의 운동학적 최적화를 가능하게 만들었다. 최적화된 형상으로 제작된 시제품은 설계의 구동 원리에 맞게 운동하였으며, 그 날갯짓 폭은 목표한 날갯짓 폭을 만족시켰다. 수치적 시뮬레이션과 실험 결과는 잘 일치하여 제시된 구동 장치가 실제로 활용될 수 있음을 보였다.

Keywords

References

  1. Alexander, D.E. (2002) Nature's Flyers: Birds, Insects, and the Biomechanics of Flight, Johns Hopkins University Press, pp.8-35.
  2. Gong, D.H. (2016) Flapping Power Ttrain Design for Micro Aerial Vehicle using Strings, KSAS Mag., 10, pp.115-117.
  3. Jeon, J.H.. Cho, H.S., Kim, Y.H, Lee, J.H., Gong, D.H., Shin, S.J., Kim, C.A. (2017) Design and Analysis of the Link Mechanism for the Flapping Wing MAV using Flexible Multi-body Dynamic Analysis, Int. J. Micro Air Vehicles, (Published), pp.4-10.
  4. Karasek, M. (2014) Robotic Hummingbird: Design of a Control Mechanism for a Hovering Flapping Wing Micro Air Vehicle, Ph.D. Dissertation, Department of Mechanical Engineering and Robotics, Free University of Brussels, pp.125-146.
  5. Keennon, M., Klingebiel, K., Won, H., Andriukov, A. (2012) Development of Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA, Nashville, Tennessee, pp.1-13.
  6. Phan, H.V., Kang, T.S., Park, H.C. (2017) Design and Stable Flight of a 21g Insec-like Tailless Flapping Wing Micro Air Vehicle with Angular Rates Feedback Control, Bioinspiration & Biomimetics, 12, pp.1-5.
  7. Pines, D.J., Bohorquez, F. (2006) Challenges Facing Future Micro-Air-Vehicle Development, J. Aircr., 43, pp.291-294.