• Title/Summary/Keyword: structural defense

Search Result 384, Processing Time 0.021 seconds

Structural Design of Composite Blade and Tower for Small Wind Turbine System

  • Jang, Mingi;Lee, Sanggyu;Park, Gwanmun;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • This work is to propose a structural design and analysis procedure for development of the low noise 1kW class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. The proposed structural configuration has a sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. Moreover Investigation on structural safety of tower was verified through structural analysis by FEM.

A Study on the Light Weighting of APU through Structural Analysis (구조해석을 통한 보조발전기 경량화에 관한 연구)

  • Kim, Hye-Eun;Kim, Jin-Hoon;Noh, Sang-Wan;Kim, Byeong-Ho;Baek, Hyun-Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.895-910
    • /
    • 2019
  • Purpose: The purpose of this study is to lighten the APU (Auxiliary Power Unit) structure of the KAAV (Korea Assault Amphibious Vehicle) through structural analysis. Methods: Commercially-available program (MIDAS.NFX) was used for finite element analysis. Frequency response analysis was performed through linear static and mode analyses to verify the structural stability according to the change of the structural materials. Results: Numerical simulation (linear static, mode and frequency response analyses) results showed that the safety factor of the APU was over 1.5 even under the worst case conditions. The APU made by aluminum structures was expected to be available in the military field, since every requirements in the KDS (Korean Defense Specifications) was fulfilled during the various tests and evaluations. Conclusion: The structural analysis was verified that the structural stability of the APU structure of the KAAV after change of the structural material.

Analysis of Performance Factors of Defense Logistics Strategy (국방물류전략의 성과요인 분석)

  • Kim, Jinho;Lee, Seong-Yoon;Lee, Jaiill;Seo, Jeonghun;Kang, Seokjoong
    • Journal of Information Technology Services
    • /
    • v.17 no.4
    • /
    • pp.21-35
    • /
    • 2018
  • This study reconstructed the military logistics improvement project currently being implemented by ROK military as a defense logistics strategy. In addition the factors affecting the performance of the defense logistics strategy are analyzed using PLS. The significance of this study is as follows. First, the defense logistics improvement project was structured as a defense logistics strategy according to function. Second, PLS is used for performance factor analysis. Most of the existing defense researches utilized the ML structural equation. However, this study used the PLS structural equation in view of the fact that each detail project is the formation of defense logistics strategy. Third, we identified projects that have a substantial impact on defense logistics performance and those that do not. We found that inventory, process, and information strategy influenced logistics performance among defense logistics strategies. On the other hand, it was confirmed that the facility/equipment strategy had no significant effect on defense logistics performance.

Structural Weld Strength Analysis on Door Hinge of Field Artillery Ammunition Support Vehicle (자주포용 탄약 운반 궤도차량 도어힌지 용접부 구조강도 해석)

  • Kang, Hyeon-Je;Kim, Byeong-Ho;Kim, Byung-Hyun;Seo, Jae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2016
  • This study analyzed the structural weld strength for a door hinge for a field artillery ammunition support vehicle. In order to determine the optimal conditions, we measured the modal analysis and analyzed the leg length of a rear door hinge. From these methods, we acquired the vibration frequency of normal mode and the optimal welding leg length conditions. It was possible to obtain a structural stability for a rear door hinge of the field artillery ammunition support vehicle. In the future, this should be used as a reference source for the weld strength analysis of high vibration and high weight structures for another welding system design.

Structural Test and Evaluation of Composite Blade for Wind Turbine System

  • Ahn, Sungjin;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.17-20
    • /
    • 2016
  • In this work, a structural design on horizontal axis wind turbine blade using natural flax fiber composite is performed. The structural design results of flax/epoxy composite blade are compared with the design results of glass/epoxy composite blade. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Through the structural analyses, it is confirmed that the designed blade using natural composite is acceptable for structural safety, blade tip deflection, structural stability, resonance possibility, and weight. Finally, structural test of manufactured blade was performed. Through the structural test, it is confirmed that the designed blade is acceptable.

Development of Project Management Index to Improve Defense Project Management Capabilities (국방 사업관리 능력 향상을 위한 사업관리지수 개발)

  • Han, Hong-Kyu;Choi, Seok-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.831-840
    • /
    • 2010
  • The management systems of defense projects need to be well-maintained because of huge cost and long-terms of acquisition & operation in conducting defense acquisition. In this paper, we use a structural equation model(SEM) to develop an project management index(PMI) for effective defense project. The concept of a customer satisfaction index is used to assess the PMI for strategic improvement plans for various characteristics of project management. It is expected that our model can be used to evaluate and improve the project management capability of defense acquisition.

Study on Transient Structural Load Analysis of Aircraft Suspension Equipment (항공기용 서스펜션 장비의 천이구조하중해석에 대한 연구)

  • Cha, Jinhyun;Chung, Sangjun;Choi, Kwanho
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.23-30
    • /
    • 2015
  • In this study, a transient structural load analysis system was constructed to calculate the applied load on the suspension equipment corresponding to the aircraft flight conditions based on military specifications. Aircraft flight data (altitude, velocity, acceleration, angle of attack and etc. at aircraft center of gravity) were used as input parameters and the calculated load of the suspension equipment at wings on the left and right side was printed out for the structural load analysis. As a calculation procedure, first of all, load analysis was carried out at the center of gravity of the external store, Secondly, a trial reaction force analysis was conducted on hook and swaybrace of suspension equipment. All procedure of calculations was programed to analyze the structural load automatically. To verify the numerical results, structural load analysis using the experimental flight data was performed.

A Study on Ensuring Reliability of Hydraulic Pumps for Wheeled Armored Vehicles through Analysis and Testing (차륜형장갑차용 유압펌프의 해석 및 시험을 통한 신뢰성 확보에 관한 연구)

  • Kim, Won-Jae;Lee, Ho-Jun;Choi, Chung-Seok;Seo, Suk-Ho;Choi, Sung-Woong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.78-84
    • /
    • 2020
  • This paper introduces the structural and vibration analysis performed in the localization development process of hydraulic pumps used in wheeled armored vehicles. The maximum strain, maximum stress, maximum displacement, and minimum safety factor were calculated using structural analysis. Furthermore, it was found that the dangerous resonance frequency was avoided through vibration analysis. In addition, the reliability of the analysis results was verified by passing various tests, such as the actual vibration test and the actual durability test. The developed hydraulic pump is expected to contribute significantly to the maintenance of military vehicles in the future.

A Probabilistic Structural Design Method of Composite Propulsion System (복합재 추진기관의 확률적 구조 설계 기법)

  • Hwang, Tae-Kyung;Kim, Hyung-Kun;Kim, Seong-Eun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.80-85
    • /
    • 2013
  • This paper describes a probabilistic structural design method of composite propulsion system by comparing safety factor based on average value and allowable value with structural reliability. Generally, the required structural safety factor and reliability of composite pressure vessel are 1.5 and 0.999, respectively. In the case of structural design using average strength, the safety factor which satisfies the required structural reliability depends on the variation of fiber strength. However, the structural design using allowable value shows constant safety factor for the variation of fiber strength, because the allowable value of fiber strength is calculated by considering the variation of fiber strength. Through the analysis results, it was known that the fiber strength is the most important design random variable for the structural design of composite pressure vessel and the variation of fiber strength must be minimized to develop the high performance composite propulsion system.