• Title/Summary/Keyword: strongly nil matrix

Search Result 4, Processing Time 0.011 seconds

SOME STRONGLY NIL CLEAN MATRICES OVER LOCAL RINGS

  • Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.759-767
    • /
    • 2011
  • An element of a ring is called strongly nil clean provided that it can be written as the sum of an idempotent and a nilpotent element that commute. A ring is strongly nil clean in case each of its elements is strongly nil clean. We investigate, in this article, the strongly nil cleanness of 2${\times}$2 matrices over local rings. For commutative local rings, we characterize strongly nil cleanness in terms of solvability of quadratic equations. The strongly nil cleanness of a single triangular matrix is studied as well.

STRONGLY NIL CLEAN MATRICES OVER R[x]/(x2-1)

  • Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.589-599
    • /
    • 2012
  • An element of a ring is called strongly nil clean provided that it can be written as the sum of an idempotent and a nilpotent element that commute. We characterize, in this article, the strongly nil cleanness of $2{\times}2$ and $3{\times}3$ matrices over $R[x]/(x^2-1)$ where $R$ is a commutative local ring with characteristic 2. Matrix decompositions over fields are derived as special cases.

SUMS OF TRIPOTENT AND NILPOTENT MATRICES

  • Abdolyousefi, Marjan Sheibani;Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.913-920
    • /
    • 2018
  • Let R be a 2-primal strongly 2-nil-clean ring. We prove that every square matrix over R is the sum of a tripotent and a nilpotent matrices. The similar result for rings of bounded index is proved. We thereby provide a large class of rings over which every matrix is the sum of a tripotent and a nilpotent matrices.

Polynomial Equation in Radicals

  • Khan, Muhammad Ali;Aslam, Muhammad
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.545-551
    • /
    • 2008
  • Necessary and sufficient conditions for a radical class of rings to satisfy the polynomial equation $\rho$(R[x]) = ($\rho$(R))[x] have been investigated. The interrelationsh of polynomial equation, Amitsur property and polynomial extensibility is given. It has been shown that complete analogy of R.E. Propes result for radicals of matrix rings is not possible for polynomial rings.