• 제목/요약/키워드: strong-motion duration

검색결과 29건 처리시간 0.025초

Effects on amplification of strong ground motion due to deep soils

  • Jakka, Ravi S.;Hussain, Md.;Sharma, M.L.
    • Geomechanics and Engineering
    • /
    • 제8권5호
    • /
    • pp.663-674
    • /
    • 2015
  • Many seismically vulnerable regions in India and worldwide are located on deep soil deposits which extend to several hundred meters of depth. It has been well recognized that the earthquake shaking is altered by geological conditions at the location of building. As seismic waves propagates through uppermost layers of soil and rock, these layers serve as filter and they can increase the duration and amplitude of earthquake motion within narrow frequency bands. The amplification of these waves is largely controlled by mechanical properties of these layers, which are function of their stiffness and damping. Stiffness and damping are further influenced by soil type and thickness. In the current study, an attempt has been made to study the seismic site response of deep soils. Three hypothetical homogeneous soil models (e.g., soft soil, medium soil and hard soil) lying on bedrock are considered. Depth of half space is varied from 30 m to 2,000 m in this study. Controlled synthetic motions are used as input base motion. One dimensional equivalent linear ground response analyses are carried out using a computer package DEEPSOIL. Conventional approach of analysing up to 30 m depth has been found to be inadequate for deep soil sites. PGA values are observed to be higher for deeper soil profiles as compared to shallow soil profiles indicating that deeper soil profiles are more prone to liquefaction and other related seismic hazards under earthquake ground shaking. The study recommends to deal the deeper soil sections more carefully for estimating the amplification factors for seismic hazard assessment at the surface.

Evidence of Vertical Mixing Caused by High Frequency Internal Waves along the Eastern Coast of Korea

  • Han, In-Seong;Lee, Ju;Jang, Lee-Hyun;Suh, Young-Sang;Seong, Ki-Tack
    • Fisheries and Aquatic Sciences
    • /
    • 제11권1호
    • /
    • pp.41-49
    • /
    • 2008
  • Internal waves and internal tides occur frequently along the eastern coast of Korea. During the spring-tide period in April 2003, the East Korean Warm Current (EKWC) flowed near the Korean East Coast Farming Forecast System (KECFFS; a moored oceanographic measurement system), creating a strong thermocline at the intermediate layer. Weakened stratification and well-mixed water appeared frequently around the KECFFS, with duration of approximately 1 day. The results suggest the following scenario. Baroclinic motion related to the internal tide generated high frequency internal waves around the thermocline. The breaking of those waves then created turbulence around the thermocline. After well-mixed water appeared, a current component with perpendicular direction to the EKWC appeared within the inertial period. The change in stratification around the KECFFS locally broke the geostrophic balance as a transient state. This local vertical mixing formed an ageostrophic current within the inertial period.

토크 변동에 의한 백래시를 가진 헬리컬 기어의 비선형 동적 해석 (Nonlinear Dynamic Analysis of Helical Gears with Backlash by Torque Fluctuation)

  • 박찬일
    • 한국소음진동공학회논문집
    • /
    • 제20권7호
    • /
    • pp.677-684
    • /
    • 2010
  • Backlashes of gears provide gears for good lubrication and for removal of the interference between teeth by the wear and manufacturing errors. The backlash is the strong nonlinear factor to gears. This study deals with nonlinear modeling of helical gears with backlash. Excitation of helical gears comes from torque variation, the tooth surface error, and the periodical change of mesh stiffness. To study the effect of torque fluctuation, equation of motion for the single degree of freedom torsional model of helical gears with the periodical change of mesh stiffness and the backlash was derived. The Newmark beta method and the Newton-Raphson method were used to obtain the nonlinear behaviors of mesh forces of helical gears. All excitation frequencies initially caused the tooth separation and single-sided impacts of the gear pair and eventually led to the normal tooth contact. However, some special excitation frequencies caused the single-sided impacts in the entire time as well as the initial time. Damping increase reduced the duration of single-sided impacts, and the backlash increase caused those in the entire time domain.

Researching Visual Immersion Elements in VR Game <Half-Life: Alyx>

  • Chenghao Wang;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권2호
    • /
    • pp.181-186
    • /
    • 2023
  • With the development of VR technology, the visual immersion of VR games has been greatly enhanced nowadays. There has been an issue that has been troubling players in previous VR games, which is motion sickness. Therefore, VR games have been limited in terms of game mechanics, game duration, and game scale, greatly reducing the immersive experience of visual immersion. However, <Half-Life: Alyx> is different from previous VR games in that players can actually perform spatial displacement in the game scene, rather than being fixed in one place for 360-degree observation and interaction. At the same time, compared to traditional games, VR games no longer need to rely on screens, and the complete visual immersion enhances the fun and playability of the game. This research focuses on the VR game <Half-Life: Alyx> to explore its immersive factors in terms of visual perception. Through in-depth analysis of elements such as color, texture mapping, lighting, etc. in VR games, it was found that the game creates a strong sense of visual immersion in these aspects. Through analysis, it is helpful to gain a deeper understanding of the factors that contribute to visual immersion in VR games, which has certain reference value for game developers and related professionals.

구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수 (Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes)

  • 임승현;최인길;전법규;곽신영
    • 한국지진공학회논문집
    • /
    • 제24권3호
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

사용자-서브루틴과 양해법 유한 요소 해석을 이용한 선박의 유빙 저항 추정 (Ice Floe-induced Ship Resistances using Explicit Finite Element Analyses with a User-subroutine)

  • 한동화;백광준;정성엽;정준모
    • 대한조선학회논문집
    • /
    • 제57권2호
    • /
    • pp.88-95
    • /
    • 2020
  • There have been many attempts to predict resistance of vessels in ice floe environment, but they mostly have both strong and weak points at the same time; for instance, simplified formulas are very fast but less flexible to types of ship and ice conditions and other numerical techniques need high computing cost for increased accuracy. A new numerical simulation technique of combining explicit finite element analysis code with a user-subroutine to control real-time forces acting on ice floes was proposed, thereby it was possible to predict ship-to-ice floe resistance with higher convenience and accuracy than other proposed approaches. The basic theory on how real-time hydrostatic and hydrodynamic forces acting on ice floes could be generated using user-subroutine was explained. The heave motion of a single ice floe was simulated using the user-subroutine and the motion amplitudes and periods were almost consistent with analytic values. Towing tests of an icebreaker model ship were simulated using explicit finite element analyses with the user-subroutine. The ice-induced resistance obtained from the towing experiments and simulations showed significant differences. Intentional increase of the drag coefficient to increase the contact duration between the ice floes and rigid model ship leaded the total resistance to be substantially consistent between the model tests and numerical simulations.

Non-Gaussian Closure 기법을 적용한 비선형 교량 구조계의 파괴확률 추정 기법 (A Failure Probability Estimation Method of Nonlinear Bridge Structures using the Non-Gaussian Closure Method)

  • 함대기;고현무;박관순
    • 한국지진공학회논문집
    • /
    • 제14권1호
    • /
    • pp.25-34
    • /
    • 2010
  • 비선형 이력거동을 가지는 교량 구조계에 지진하중이 작용하였을 때 파괴확률을 추정할 수 있는 기법을 제시하였다. 교량 구조계는 지진하중이 작용할 때 이중선형 이력거동을 보이는 단자유도 진동계로서 모델링하였다. 교량의 파괴는 상단의 변위 응답이 지진 지속시간 동안 정해진 한계 상태 값을 최초로 넘어설 때 발생하는 것으로 정의하였다. 지진하중에 대한 비선형 구조계의 최초통과확률을 추정하기 위하여, 단위시간 동안 한계상태를 넘어서는 빈도수를 계산하는 crossing theory를 적용하였다. 단위시간 동안의 한계상태 초과 빈도수 추정을 위하여 필요한, 비선형 구조계의 응답과 응답의 미분값 간의 결합확률밀도함수를 추정하기 위한 기법으로서, Non-Gaussian closure 기법을 제시하였다. 다양한 지반운동 특성을 가지는 다수의 인공지진 가속도 시간이력을 생성하여 교량의 동적 특성에 따른 파괴확률을 추정하였다. 제시된 기법을 사용한 결과 얻어진 파괴확률 값을 crude Monte-Carlo 시뮬레이션을 통하여 얻어진 정해 및 기존의 방법을 적용하여 얻어진 파괴확률 값과 비교함으로써 제시된 파괴확률 추정 기법의 정확성과 효율성을 검증하였다.

The Predictable Factors of the Postoperative Kyphotic Change of Sagittal Alignment of the Cervical Spine after the Laminoplasty

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Kim, Dong Ha;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권5호
    • /
    • pp.577-583
    • /
    • 2017
  • Objective : Laminoplasty is an effective surgical method for treating cervical degenerative disease. However, postoperative complications such as kyphosis, restriction of neck motion, and instability are often reported. Despite sufficient preoperative lordosis, this procedure often aggravates the lordotic curve of the cervical spine and straightens cervical alignment. Hence, it is important to examine preoperative risk factors associated with postoperative kyphotic alignment changes. Our study aimed to investigate preoperative radiologic parameters associated with kyphotic deformity post laminoplasty. Methods : We retrospectively reviewed the medical records of 49 patients who underwent open door laminoplasty for cervical spondylotic myelopathy (CSM) or ossification of the posterior longitudinal ligament (OPLL) at Pusan National University Yangsan Hospital between January 2011 and December 2015. Inclusion criteria were as follows : 1) preoperative diagnosis of OPLL or CSM, 2) no previous history of cervical spinal surgery, cervical trauma, tumor, or infection, 3) minimum of one-year follow-up post laminoplasty with proper radiologic examinations performed in outpatient clinics, and 4) cases showing C7 and T1 vertebral body in the preoperative cervical sagittal plane. The radiologic parameters examined included C2-C7 Cobb angles, T1 slope, C2-C7 sagittal vertical axis (SVA), range of motion (ROM) from C2-C7, segmental instability, and T2 signal change observed on magnetic resonance imaging (MRI). Clinical factors examined included preoperative modified Japanese Orthopedic Association scores, disease classification, duration of symptoms, and the range of operation levels. Results : Mean preoperative sagittal alignment was $13.01^{\circ}$ lordotic; $6.94^{\circ}$ lordotic postoperatively. Percentage of postoperative kyphosis was 80%. Patients were subdivided into two groups according to postoperative Cobb angle change; a control group (n=22) and kyphotic group (n=27). The kyphotic group consisted of patients with more than $5^{\circ}$ kyphotic angle change postoperatively. There were no differences in age, sex, C2-C7 Cobb angle, T1 slope, C2-C7 SVA, ROM from C2-C7, segmental instability, or T2 signal change. Multiple regression analysis revealed T1 slope had a strong relationship with postoperative cervical kyphosis. Likewise, correlation analysis revealed there was a statistical significance between T1 slope and postoperative Cobb angle change (p=0.035), and that there was a statistically significant relationship between T1 slope and C2-C7 SVA (p=0.001). Patients with higher preoperative T1 slope demonstrated loss of lordotic curvature postoperatively. Conclusion : Laminoplasty has a high probability of aggravating sagittal balance of the cervical spine. T1 slope is a good predictor of postoperative kyphotic changes of the cervical spine. Similarly, T1 slope is strongly correlated with C2-C7 SVA.

9.12 경주지진 및 11.15 포항지진의 구조손상 포텐셜 비교연구 (Comparative Analysis of Structural Damage Potentials Observed in the 9.12 Gyeongju and 11.15 Pohang Earthquakes)

  • 이철호;김성용;박지훈;김동관;김태진;박경훈
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.175-184
    • /
    • 2018
  • In this paper, comparative analysis of the 9.12 Gyeongju and 11.15 Pohang earthquakes was conducted in order to provide probable explanations and reasons for the damage observed in the 11.15 Pohang earthquake from both earthquake and structural engineering perspectives. The damage potentials like Arias intensity, effective peak ground acceleration, etc observed in the 11.15 Pohang earthquake were generally weaker than those of the 9.12 Gyeongju earthquake. However, in contrast to the high-frequency dominant nature of the 9.12 Gyeongju earthquake records, the spectral power of PHA2 record observed in the soft soil site was highly concentrated around 2Hz. The base shear around 2 Hz frequency was as high as 40% building weight. This frequency band is very close to the fundamental frequency of the piloti-type buildings severely damaged in the northern part of Pohang. Unfortunately, in addition to inherent vertical irregularity, most of the damaged piloti-type buildings had plan irregularity as well and were non-seismic. All these contributed to the fatal damage. Inelastic dynamic analysis indicated that PHA2 record demands system ductility capacity of 3.5 for a structure with a fundamental period of 0.5 sec and yield base shear strength of 10% building weight. The system ductility level of 3.5 seems very difficult to be achievable in non-seismic brittle piloti-type buildings. The soil profile of the PHA2 site was inversely estimated based on deconvolution technique and trial-error procedure with utilizing available records measured at several rock sites during the 11.15 Pohang earthquake. The soil profile estimated was very typical of soil class D, implying significant soil amplification in the 11.15 Pohang earthquake. The 11.15 Pohang earthquake gave us the expensive lesson that near-collapse damage to irregular and brittle buildings is highly possible when soil is soft and epicenter is close, although the earthquake magnitude is just minor to moderate (M 5+).