• Title/Summary/Keyword: strong stability

Search Result 800, Processing Time 0.024 seconds

A Simple Mlodel for Dispersion in the Stable Boundary Layer

  • Sung-Dae Kang;Fuj
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 1992
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are "A" and "B" at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.al dispersion model.

  • PDF

SOME STRONG CONVERGENCE RESULTS OF RANDOM ITERATIVE ALGORITHMS WITH ERRORS IN BANACH SPACES

  • Chugh, Renu;Kumar, Vivek;Narwal, Satish
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.147-161
    • /
    • 2016
  • In this paper, we study the strong convergence and stability of a new two step random iterative scheme with errors for accretive Lipschitzian mapping in real Banach spaces. The new iterative scheme is more acceptable because of much better convergence rate and less restrictions on parameters as compared to random Ishikawa iterative scheme with errors. We support our analytic proofs by providing numerical examples. Applications of random iterative schemes with errors to variational inequality are also given. Our results improve and establish random generalization of results obtained by Chang [4], Zhang [31] and many others.

Simulation-based Sensitivity Analysis of Suspension Elements of an Articulated Bogie (시뮬레이션에 의한 관절대차 현가요소 민감도 해석)

  • 한형석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.201-207
    • /
    • 2003
  • Sensitivity analysis of suspension elements of an articulated bogie for light railway vehicles is presented. The ride, stability and safety are used as dynamic performance indices. Suspension elements of 10 and a conicity of wheel are used as design variables. To analyze sensitivity of design variables. the railway vehicle dynamics analysis program AGEM is used. The results show that the secondary suspension elements have a strong effect on ride and the primary suspension elements have a moderate effect on ride. Conicity of wheel has a strong effect on the stability. The safety is not effected by all the design variables.

Sensitivity Analysis of Suspension Elements of an Articulated Bogie for Light Railway Vehicles (경량전철용 관절대차 현가요소의 민감도 해석)

  • Han, Hyung-Suk;Hur, Shin;Ham Sung-Do;Cho, Dong-Hyun
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.421-428
    • /
    • 1998
  • Sensitivity analysis of suspension elements of an articulated bogie for light railway vehicles is presented. The ride, stability and safety are used as dynamic performance index. Suspension elements of 10 and a conicity of wheel are used as design variables, To analyze sensitivity of design variables, the railway vehicle dynamics analysis program AGEM is used. The results shows that the secondary suspension elements have a strong effect on ride and the primary suspension elements have a moderate effect on ride. Conicity of wheel has a strong effect on the stability, The safety is not effected by all the design variables.

  • PDF

Electrochemical Capacitance of Activated Carbons Regenerated using Thermal and Chemical Activation

  • Park, Jung Eun;Lee, Gi Bbum;Hwang, Sang Youp
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.339-345
    • /
    • 2021
  • Spent activated carbons (SACs) collected from a water treatment plant were regenerated and then adopted as electrochemical material in capacitors. The SACs used in this study were regenerated via two steps, namely thermal and chemical activation. However, during the activation process, the adsorbates were converted into ashes, which caused pore blockage and decreased specific surface area. The regenerated SACs were washed with acid solutions with different levels of acidity (strong: HCl, mild: H3PO4, and weak: H2O2) to remove the ashes. The regenerated SACs washed with HCl exhibited the highest specific surface area, although their capacitance was not the highest. Conversely, the specific surface area of regenerated SACs washed using H3PO4 was slightly lower than that of HCl, but exhibited higher capacitance and electrochemical stability. Although the strong acid removed the generated ashes in the pores efficiently, it could adversely affect their structural stability, which would lead to lower capacitance.

APPROXIMATING COMMON FIXED POINT OF THREE MULTIVALUED MAPPINGS SATISFYING CONDITION (E) IN HYPERBOLIC SPACES

  • Austine Efut Ofem;Godwin Chidi Ugwunnadi;Ojen Kumar Narain;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.623-646
    • /
    • 2023
  • In this article, we introduce the hyperbolic space version of a faster iterative algorithm. The proposed iterative algorithm is used to approximate the common fixed point of three multi-valued almost contraction mappings and three multi-valued mappings satisfying condition (E) in hyperbolic spaces. The concepts weak w2-stability involving three multi-valued almost contraction mappings are considered. Several strong and △-convergence theorems of the suggested algorithm are proved in hyperbolic spaces. We provide an example to compare the performance of the proposed method with some well-known methods in the literature.

Characteristics of Parylene Polymer and Its Applications (파릴렌 고분자의 특성 및 응용)

  • Yoon Young-Soo;Choi Sun-Hee;Kim Joo-Sun;Nam Sang-Cheol
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.443-450
    • /
    • 2004
  • Parylene polymer thin film shows excellent homogeneous coverage chracteristics when it was deposited onto very complex three dimensional solid matters, such as deep hole and micro crack. The parylene deposition process can be conducted at room temperature although most of chemical vapor deposition processes request relatively high processing temperature. Therefore, the parylene coating process does not induce any thermal problems. Parylene thin film is transparent and has extremly high chemical stability. For example, it shows high chemical stability with high reactive chemical solutions such as strong acid, strong alkali and acetone. The bio-stability of this material gives good chances to use for a packaging of biomedical devices and electronic devices such as display. In this review article, principle of deposition process, properties and application fields of parylene polymer thin film are introduced.

Characteristics of Flame Stabilization of the LFG Mixing Gas (LFG 혼합연료의 화염 안정화 특성)

  • Lee, Chang-Eon;Hwang, Cheol-Hong;Kim, Seon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.328-335
    • /
    • 2002
  • In this study, experiments were performed to investigate the characteristics of flame stabilization of the LFG mixing gas. LFG has merely half heating value compared with liquified natural gas but can be greatly utilized as a commercial fuel. In order to use LFG in practical combustors, Webbe Index and heating value of LFG mixing gas were adjusted by mixing LPG with LFG. The comparisons were conducted between CH$_4$and LFG mixing gas for searching the region of flame stabilization based upon the flame blowout at maximum fuel stream velocity. As a result, the flame stability of LFG mixing gas was not improved with that of CH$_4$in non-swirl and weak swirl diffusion flame. However, LFG mixing gas had wide flame stabilization region rather than CH$_4$with increasing ambient flow rate in strong swirl. It was also found that flame stability was affected by included quantity of inert gas such as CO$_2$in the weak swirl but by heating value of fuel in strong swirl.

STABILITY OF THE MILSTEIN METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS

  • Hu, Lin;Gan, Siqing
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1311-1325
    • /
    • 2011
  • In this paper the Milstein method is proposed to approximate the solution of a linear stochastic differential equation with Poisson-driven jumps. The strong Milstein method and the weak Milstein method are shown to capture the mean square stability of the system. Furthermore using some technique, our result shows that these two kinds of Milstein methods can well reproduce the stochastically asymptotical stability of the system for all sufficiently small time-steps. Some numerical experiments are given to demonstrate the conclusions.

Power System Nonlinearity Modal Interaction by the Normal Forms of Vector Fields

  • Zhang, Jing;Wen, J.Y.;Cheng, S.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • Because of the robust nonlinear characteristics appearing in today's modern power system, a strong interaction exists between the angle stability and the voltage stability, which were conventionally studied insularly. However, as the power system is a complex unified system, angle instability always happens in conjunction with voltage instability. The authors propose a novel method to analyze this type of stability problem. In the proposed method, the theory of normal forms of vector fields is utilized to treat the auxiliary dynamic system. By use of this method, the interaction between response modes caused by the nonlinearity of the power system can be analyzed. Consequently, the eigenvalue analysis method is extended to cope with performance analysis of the power system with heavy nonlinearity. The effectiveness of the proposed methodology is verified on a 3-bus power system.